Planning for Information Gathering: A Tutorial Survey

Eric Lambrecht & Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287

ASU CSE Technical Report 96-017; May, 1997

Abstract

We discuss the problem of information gathering, which is that of integrating mul-
tiple heterogeneous information sources so they appear as a single information source
that a user can pose queries on. We characterize information gathering as being made
up of two subproblems: query planning and plan execution. Query planning is the
process of searching through the space of rewrites of the original query to find rewrites
containing only queries on available information sources. Query execution is the process
of executing those queries and dealing with execution failure. We relate this general
view of information gathering with various information gathering systems, including
the Information Manifold, SAGE, Occam/Razor, and TSIMMIS.

1 Overview

The information gathering problem is that of integrating a set of autonomous information
sources together so they can be queried as if they were a single information source. The
goal is to be able to present to the user a single, conceptual information source on which
queries can be posed. An information gatherer solves this problem by converting a query on
the conceptual information source into queries on individual information sources and then
returning the answer back to the user in terms of the conceptual information source.

One obvious impetus for IG is the proliferation of information sources available on the
world wide web. There are information sources for movies, people, automobiles, weather,
news, etc. The interface to each source is different, and there are no standard annotations as
to which information sources contain related information. A great deal of effort is required
to manually combine information from multiple information sources. The creation of an
information gatherer for this domain would make it easier to retrieve related information
from the world wide web and networked information sources.

The aim of this paper is to define what an information gathering problem is, and provide
a tutorial and survey of database and Al planning research on solving this problem. In
section 2 we clearly define what an information gathering problem is and we describe the

simplifying assumptions made by current information gathering researchers. In section 3, we
describe how the problem is formally modelled given our simplifying assumptions. In section
4 we define a general algorithm that generates a plan to solve an information gathering
problem, and in section 4.5 we describe how that plan is executed. Section 5 discusses some
implemented information gatherers, and section 6 summarizes the paper and points out areas
of future research.

2 Problem Formulation

We formulate the general information gathering problem as this: given a world model, a set
of information sources, a mapping of the contents of information sources to the world model,
and a query on the world model, return information contained in the information sources
that answer the query on the world model.

Consider that under this formulation Internet search engines and directories (such as
Infoseek or Yahoo) are not full information gatherers (do not solve information gathering
problems). These tools merely return pointers to possible information related to the user’s
query. An information gatherer must return the actual information that satisfies the user’s
query and it should not return information not currently contained within the set of infor-
mation sources.

Current information gathering research makes some simplifying assumptions about the
information gathering problem that are not expressed in the above formulation. The first
is that information sources can all be modelled as relational databases. This leads to the
formulation of the world model as a global relational schema and (as will be described later)
the mappings of the contents of the information sources to the world model as views of the
world model. Information sources are assumed to be able to answer simple relational queries
that possibly require binding patterns to be satisfied.

We also make a the assumption that an ideal information gatherer should generate all
possible information contained in the information sources that answer the query using the
fewest number of information sources. The reasoning behind this assumption is that users
want all available answers to their query, and that the cost of information gathering is
dominated by the number of information sources accessed to answer a query. An alternative
to this formulation might be to assume a different cost for querying each information source,
and the goal would be to return as much information as can be gathered within a certain
cost, or return the most amount of information for the cheapest cost.

3 Formalization of the Information Gathering Problem

In this section we describe how we formally model information sources, the world model,
queries on the world model, valid plans for answering a world query, and the mapping of
information sources to the world model.

3.1 Modelling Queries and Information Sources

We model the information stored in information sources as simple unique relations. All
tuples for some source are made up of N typed elements. The information stored in some
source is then represented by a uniquely named relation with N arguments, each argument
represented by a variable. If all variables are replaced with constant values, the ground
relation is defined to be true if a tuple with exactly those constant values exists in the
database. Consider a white pages information source that stores tuples with name, area
code, phone number, and phone company attributes. We can describe it with the relation
WHITEPAGES (Name, Area, Phone, Co) (all information source relations will be in SMALL
CAPS type).

Information source queries are defined as views. The notion of a view comes from database
literature, and looks like the following:

query(Phone, Company) :- WHITEPAGES(Name, Area, Phone, Company) N\
Name = “Eric”

The portion to the right of the “:-” is called the body of the view and is a logical conjunctive
sentence consisting only of information source relations and constraints on their arguments.
The portion to the left of the “:-” is called the head and defines the size of the tuples
returned by the query. For every true instance of the conjunctive sentence in the body, the
same variable bindings are applied to the head to define a tuple that satisfies the query. Our
example query returns tuples with two attributes, the first of which is Eric’s phone number,
and the second is the phone company that services that number. In general we only allow
conjunctive sentences with positive terms in the body of the query.

In the same way that we describe the contents of our information sources using relations,
we can build a world model by creating relations that specify all the information we think
we would like to query. These are the relations that the user will pose queries on. The
world model relations can be thought of as a representing information contained in a virtual
database of all possible information. For example, we might have the world model relations

name(Name), phone-of(Name, Area, Phone), phone(Area, Phone), and
phone-company(Name, Co) which represent all possible names, phone numbers, and phone
companies.

We can also express world model queries as views, except that the body of the view may
contain only world model relations. For example the world model query:

query(Phone, Company) :- phone-of(Name, Area, Phone) A
phone-company(Name, Company) N
Name = “Eric”

asks for Eric’s phone numbers, and the companies that service those numbers.

The task of an information gatherer, given our formalism, is to convert a world model
query into information source queries that generate information that would satisfy the world
model query and then execute those queries. We call a query with only information source
relations in it a plan because it describes what information sources need to be accessed and
[implicitly] in what order they need to be accessed.

3.2 Relating Information Sources to the World Model

We can relate our information sources to the world model by creating views that define
the information source relations in terms of queries on the world model. We will put an
information source’s relation in the head, and in the body we will put the query over the
world model that would produce equivalent information as contained in the source. For
example:

WHITEPAGES (Name, Area, Phone, Co) < name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) N

phone-company(Name, Co)

In doing this, we are defining all the tuples that satisfy the world model relations in the
body as being exactly those that exist in the information source named in the head.

It may be the case that our information sources do not map up exactly to a query in the
world model. For instance, we might have a phone book information source which does not
contain all name and phone number pairs that would be available in the world model, and we
cannot define a specific enough (and reasonably small enough) query over the world model
that exactly defines all the tuples contained in the source. In this case we will define a view
where the body is over-general and describes more information than is actually contained
in the information source (just so we do not miss anything during information gathering).
We will write the view definition with a “:-” rather than a “<” to denote that while all the
information described in the head of the rule is contained in the information described in
the body, it is not the case the all the information described in the body is contained in the
head. Our new definition for our white pages database will be:

WHITEPAGES (Name, Area, Phone, Co) :- name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) A
phone-company(Name, Co)

We are also now going to refer to the white pages database as being incomplete. An
information source is incomplete if the information contained in it is less than the information
that would be generated by executing the world query in its view on the conceptual database
of all information that the world model describes. Conversely, if execution of the world query
in its view would generate exactly the same information that is in the information source,
we say the information source is complete. Our notion of completeness, then, is defined as
how accurately the information contained in some information source can be described in
terms of the world model.

This notion of completeness is important, because the information gatherer should re-
trieve as much information described in the world query as possible, while at the same time
minimizing the amount of redundant information gathered. If we do not state that some
information sources are incomplete, the information gatherer might incorrectly reason that
the information it has retrieved from some information sources completely answers a world
query, when it actually does not. Also, the information gatherer might needlessly retrieve

information from two sources where both of them contain exactly the same information.

3.3 Modelling Constrained Sources

Often a real-world information source cannot answer all arbitrary queries over the infor-
mation it contains. In this case, we say that the information source has query constraints
and is not, in database terminology, fully relational. One important class of restrictions are
binding restrictions, where an information source requires that some attributes be bound in
any query sent to it. Our white pages information source, for example, might require that
the Name attribute in any query posed to it be bound. So the following query is valid:

WHITEPAGES (Name, Area, Phone, Co) AN Name = “Eric Lambrecht”
but the next query is not, because the Name attribute is not bound to any value:
WHITEPAGES (Name, Area, Phone, Co) A Co = “USWest”

By convention, we express these binding restrictions in the description of the information
source in terms of the world view by putting a “$” character in front of the attributes that
must be bound for a query. For example, we can express that the whitepages information
source has the binding restriction on its Name attribute by defining its world view as:

WHITEPAGES ($Name, Area, Phone, Co) :- name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) N
phone-company(Co)

3.4 Desiderata for Information Gathering Plans

Having discussed the way information sources and queries are modeled, we are now ready
to define information gathering plans, and their desirable characteristics. Formally, an in-
formation gathering plan for a given query is a conjunction of information source relations.
For example, given the query for generating the list of telephone numbers of all ASU CS
students:

query(Phone, Company) :- phone-of(Name, Area, Phone) A
phone-company(Name, Company) N
Student(Name, CSDEPT)

a plan for satisfying this query might be:

plan1(Phone, Company) :-CSSTUDENTS(Name) A WHITEPAGES(Name, Company) A

(where CSSTUDENTS is presumably a database that lists all the students in the ASU CS
department).
This plan can be given both declarative and operational semantics. Declaratively, it is

just a relation defined by the conjunction of two other information source relations. The
operational semantics of the plan involve source calls and standard database operations on
the returned tuples, such as joins, selections, unions etc. Our plan above involves first calling
the CSSTUDENTS source, and then calling WHITEPAGES source for each of the names returned
by the call to CSSTUDENTS.

One desirable characteristic of a plan is that of soundness. An information gathering
plan is said to be sound if each of the tuples returned by the execution of this plan actually
satisfy the query. Soundness of a plan is strongly related to the soundness of the information
sources.

Another characteristic is completeness. It is useful to talk about two different notions
of completeness. An information gathering plan is said to be operationally complete if it
returns all the tuples that satisfy the user’s query that can be extracted from the available
information sources. We can also define operational completeness in terms of plan subsump-
tion. An information gathering plan P; for a query @ is said to subsume another plan P, if
P, returns all the information that is returned by P,. A plan P is said to be operationally
complete for a query @) if it subsumes every other possible plan that generates information
that satisfies the user’s query.

The second notion of completeness is conceptual completeness. An information gath-
ering plan is said to be conceptually complete if the information generated by it is exactly
the information that would have been generated if the user’s query were executed on the
conceptual database.

Note that conceptual completeness implies operational completeness, but not vice versa.
A planner should be judged in terms of its ability to produce operationally complete plans.
Conceptual completeness may be impossible to achieve given the accessible sources and the
restrictions on them. In our example, if some of the students in the CS department have
phones that are “unlisted” in the WHITEPAGES source, then we cannot blame the planner
for not returning telephone numbers of all the students. The situation would be different
if the planner had access to the university records of the students, which presumably list
everyone’s phone number. Similarly, if the query was for everybody’s telephone number,
the binding restrictions on the WHITEPAGES source implies that there is no practical way to
satisfy the query. This is because we cannot reason about when we have “the names of all
people with phone numbers”, we can only reason if we have “the names of all people”.

Finally, an information gathering plan is said to be optimal if it has the lowest cost of
execution. In general, execution cost may depend upon a variety of factors, including the
cost of accessing different sources. A common cost model used in the literature assumes
that all source calls are equally costly. In this model, the cost of a plan is proportional to
the number of information sources accessed, and a necessary condition for optimality is plan
minimality. An information gathering plan is said to be minimal if it is not subsumed by
any subplan derived from it, by dropping some source calls.

3.5 Annotating source descriptions to support reasoning about
plan completenss

In the previous section, we saw that the desiderata for information gathering plans are that
they be sound, operationally complete, and optimal. Operational completeness alone is
easy to ensure: just call all sources that are relevant to the query. However, this method
often leads to very inoptimal plans, as different sources may contain the same or highly
overlapping information. It is hard to directly reason about the operational completeness
of plans since it requires reasoning about the information that might be generated by all
possible plans. There are at least two ways of reasoning about it indirectly. First, we can
reason about conceptual completeness of a plan (since it implies operational completeness),
and stop as soon as we find a minimal plan that is conceptually complete. Second, we can
reason about the plan subsumption, and discard (or avoid generating) longer plans that
generate information that is subsumed by shorter ones.

To support the first type of reasoning, we need to characterize the completeness of the
information sources with respect to the conceptual database. Supporting the second type
of reasoning requires characterizing the relative information content of different information
sources.

Although we touched upon completeness of a source with respect to conceptual database
in Section 3.2, our modeling there was restricted to differentiating complete and incomplete
sources. Using only what we’ve described so far, there is no way to differentiate two incom-
plete information sources that have the same view. Consider two white pages databases for
Phoenix, where one has all USWest customers and some AT&T customers, while the other
has all AT&T customers and some USWest customers. Both databases would have the same
view:

USWEST (Name, Area, Phone, Co) :- name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) A Area = 602
phone-company(Name, Co)

ATT(Name, Area, Phone, Co) :- name(Name) N\

phone-of(Name, Area, Phone) A
phone(Area, Phone) A\ Area = 602
phone-company(Name, Co)

A necessary improvement to our use of views is to describe for each incomplete source
the subset of its contents that can be completely described in terms of a world model query.
These descriptions are called localized closed world (LCW) statements [?].

Recall that if we could not create a query to exactly describe the contents of some
information source, we had to describe the information source using a world query that at
least contained all the tuples that are in the information source. This ensured that we never
ignore some information contained in the source. An LCW statement is a description of the
information source in terms of a world query for which all the tuples in the world query are
guaranteed to be contained in the information source. A sample LCW statement for the
information source above that has all USWest customers might look like this:

name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) N\ Area = “602”
phone-company(Name, Co) A

Co = “USWest” :- USWEST(Name, Area, Phone, Co)

This LCW statement says that this database contains the phone numbers of all people in
Phoenix served by USWest. The semantics of the statement are the same as that of the view
statement that we used to describe our information sources: all the tuples described by the
query in the head of the rule are contained in all the tuples described by the query in the
body of the rule.

Notice that a complete information source view such as:

NAMELISTING (X) < name(X)

is equivalent to an incomplete view plus an LCW statement:

NAMELISTING (X) :- name(X)
name(X) : NAMELISTING(X)

Thus, defining a view with “<” is really only a shorthand for defining it with “:-” plus an
LCW statement.

LCW statements are necessary in order to more accurately reason about how much of
the user’s query some set of information sources can completely answer. Consider that we
formulate two plans that generate information that satisfies the user’s query, and each plan
contains incomplete information sources. The LCW statements of those sources allow the
information gatherer to reason if one plan guarantees to generate more information than the
other plan or if one plan can completely answer the user’s query. Without LCW statements
we would be forced to execute both plans, possibly at a large cost, since we lack greater
knowledge of the contents of the incomplete sources.

It is also possible to accurately describe a portion of the content of some informa-
tion source in terms of other sources. This knowledge, too, can be used by an informa-
tion gatherer to reason about the operational and conceptual completeness of informa-
tion gathering plans. For instance, we might have another white pages database, called
US-PAGES (Name, Area, Phone) , that we know contains all the information in our previous
white pages database. We can express this with the following LCW statement:

WHITEPAGES (Name, Area, Phone, Co) :- US-PAGES(Name, Area, Phone, Co)

An LCW statement of this type is called a pairwise LCW statement - and can be generalized
to note if any group of information sources subsume any other group.

4 Building and Executing Plans to Answer World Queries

Now that we have defined the world model and the information sources in terms of it,
answering a world query is a two part problem: transforming a query on the world model
into one or more plans for accessing the individual information sources, and executing those

plans to return the information to the user. The transformation of the query into one or
more plans is called query planning, and the execution of the plans it produces is called plan
execution.

As discussed earlier, a conjunctive query only with information source relations in it
is equivalent to a plan. Thus searching for a valid query plan is equivalent to searching
for a reformulation of the original query that contains only information source relations in
it. Searching for valid query reformulations proceeds through the space of reformulations
produced by reformulation rules, which can be built from information source views before any
queries are answered by the information gatherer. The rewrite rules allow us to construct
all possible rewrites of the original query that, when executed, will generate information
contained in the query. As we progress through our search, we must make use of LCW
statements to reason if rewrites we have found will generate data that subsumes what might
be produced by partial rewrites still in the search space, or if some plan we have found is
conceptually complete.

4.1 Building Reformulation Rules

The reformulation rules used to transform a world model query to information source queries
are built from the inverse of information source views. The inverse, v !, of the view with
head v(Xj,...,X,,) and no binding restrictions is a set of rules in which the body of each
new rule is the head of the original view, and the head of each new rule is a relation from
the body of the original view. All variables that appear in the head of the original rule
are unchanged, but every variable in the body of the original view that does not appear in
the head is replaced with a new function f(Xy,...,X,,) . For example, given the following
movie information source

MOVIE-MANIA (Movie) :- movie(Movie) N\ reviewed-by(Critic, Movie)
we can convert it into the following reformulation rules:
movie(Movie) - MOVIE-MANIA (Movie)

reviewed-by(f(Movie), Movie) :- MOVIE-MANIA (Movie)

The semantics of these rules are that relations that match the head of some rewrite rule
can be produced by the information source in the body of the rewrite rule. Thus, if we
replace some relation in the original query with the body of a rule that has that relation
as its head, we are replacing the specification of what we want (the world model relation)
with what must be accessed to get it (the information source relation). Consider we have
the query:

query(X) - movie(X)
it can be transformed (by applying the rules above) into
query(X) :- MOVIE-MANIA (X)

which is a plan that the information gatherer can execute (by querying the MOVIE-MANIA

information source) to generate an answer to the original query.

Views with binding restrictions are inverted slightly differently. In this case, each relation
that appears in the body of a view with binding constraints may generate multiple rules.
Assume we are working on the relation, p, that appears in the body of some view with
head v. For every combination of the relations in the body of the view such that all bound
variables appear as arguments to the relations and each relation has at least one variable not
appearing in any other relation in the combination, we will generate a new rule for p. Each
rule will have p as the head, with any argument of p that does not appear in the combination
replaced with a new function f(Xj,...,X,,), and the body will be a conjunctive sentence
with the relations in the combination and v.

For example, consider again our constraints white pages information source:

WHITEPAGES ($Name, Area, Phone, Co) :- name(Name) A
phone-of(Name, Area, Phone) A
phone(Area, Phone) A
phone-company(Co)

we can convert it into the following rules:

name(Name) - name(Name) N\
WHITEPAGES (Name, Area, Phone, Co)
name(Name) :- phone-of(Name, Area, Phone) A
WHITEPAGES (Name, Area, Phone, Co)
phone-of(Name, Area, Phone) :- mname(Name) A
WHITEPAGES (Name, Area, Phone, Co)
phone-of(Name, Area, Phone) :- phone-of(Name, Area, Phone) A
WHITEPAGES (Name, Area, Phone, Co)
phone(Area, Phone) :- name(Name) A
WHITEPAGES (Name, Area, Phone, Co)
phone(Area, Phone) :- phone-of(Name, Area, Phone) A
WHITEPAGES (Name, Area, Phone, Co)

phone-company(Co) :- name(Name) A
WHITEPAGES (Name, Area, Phone, Co)
phone-company(Co) :- phone-of(Name, Area, Phone) A

WHITEPAGES (Name, Area, Phone, Co)

Note that our inversion process is not different for complete and incomplete views. The
reformulation rules are useful in that they point out which information sources might provide
tuples that satisfy which world model relations, but they make no statement as to how many
tuples each information source can generate. This means that any rewrite of the original
query built from these reformulation rules may be incomplete, in that it does not generate
all the information described by the original query.

10

4.2 Performing Query Planning

Given our reformulation rules and a user query, we can perform a breadth first search over
the space of all rewrites of the user’s query to find the rewrites that contain only information
source relations.

The search is initialized by placing the body of the user’s query in a search queue. The
search progresses by repeatedly pulling a query from the search queue, applying the search
reformulation rules to all world model relations in the query to generate child queries, then
inserting each child query into the queue to continue reformulation. If a query pulled out of
the queue has no world relations, then a valid rewrite of the user’s query has been found.

Depending on the constraints on available information sources, there may be zero to an
infinite number of conjunctive plans extracted from the queue. First consider if all available
information sources have no binding restrictions. In this case each reformulation rule we have
generated will only have a single information source relation in its body. Therefore, every
world model relation in the user’s query will be replaced with a single information source
relation. Given a query with NV world model relations in the body, any reformulations will
contain no more than N information source relations as well. The number of reformulations
will be bounded by N™ where M is the number of available information sources. However,
if the size of the original query is not large and the number of information sources relevent
to this query is small, the search space is easily exhausted.

If information sources have binding restrictions, then the search space is much larger.
Consider that when we invert information sources with binding restrictions, one or more
world model relations can appear in the body of the rewrite rules. It’s possible that a
relation that appears as the head of a rule is also in its body, which allows for an infinite
number of applications of that rewrite rule. Thus with binding restrictions, the search space
is unbounded and there are an infinite number of plans we might find.

We can also illustrate the unboundedness of plans where binding restrictions are involved
with an example. Consider the we have the following information sources:

CS-STUDENTS (X) :- cs-student(X) A engineering-student(X)
ENGINEERING-FRIENDS($X, V) :- engineering-student(X) A engineering-student(Y)
CSE471-STUDENTS ($X) :- engineering-student(X) A cse471-student(X)

The first source lists computer science students (who are also engineering students). The
second source will give us a list of engineering friends for some engineering student. The
final will tell us if some engineering student is in the CSE 471 class. Consider now that we
want to answer the query:

student-query(X) - engineering-student(X) N cse471-student(X)

This query requests all the engineering students who are in CSE 471. Here are three plans
that can each return unique answers:

11

student-query(X) : CS-STUDENTS(X) A CSE471-STUDENTS(X)

student-query(X) : CS-STUDENTS(Y) A ENGINEERING-FRIENDS(Y, X) A
CSE471-STUDENTS(X)
student-query(X) - CS-STUDENTS(Z) A ENGINEERING-FRIENDS(Z, Y) A

ENGINEERING-FRIENDS (Y, X) A CSE471-STUDENTS (X)

Clearly there can even be more plans if we continue to make use of the engineering-friends
database to find more engineerings students.

4.3 Pruning Search Using Local Completeness Statements

It is not the case that all rewrites of the original query generate all possible information that
satisfies the user’s query over the conceptual database of all information, so search cannot
stop as soon as any rewrite is found. It is also not the case that every rewrite generates
new information not generated by other rewrites. Therefore, in order to be efficient, the
information gatherer must reason about the operational and conceptual completeness of
plans. This information is helpful in that the information gatherer might reason if a valid
rewrite subsumes another partial rewrite still in the search queue.

In order to reason about what can be generated by each plan, we need to build descriptions
of the information generated by each plan. A world model query that describes all possible
information generated by some plan can be created by simply replacing each information
source relation in the plan with its view. This world model query is called the ezpansion
of the plan. Likewise, we can replace every information source relation in the plan with
the head of its LCW statement to generate an LCW statement for the plan. For example,
consider we have the following information sources and LCW statements:

SOURCEA (X, Y) & a(X,Y)
SOURCEB(X, Y) : ¢(X, Y)Ad(Y)
c¢(X, Y)Nd(Y)Ne(Y) - SOURCEB(X, Y)

and we have generated the plan:
plan(X, Y, Z) :- SOURCEA (X, Y) A sSOURCEB(Y, 7)
Then the expansion and LCW statement for our plan will be, respectively:

plan(X, Y, Z) - o(X, Y) AN (Y, Z) N d(Z)
o(X, Y)Nc(Y, Z) Nd(Z) N e(Z) :- plan(X, Y, Z)

Using this information, we can compare the amount of information generated by some plan
with the user’s query and other plans using a technique called containment mapping.

A plan is equivalent to the user’s query if there is a containment mapping from the head
of the plan’s LCW statment to the body of the user’s query and from the body of the user’s
query to the head of the plan’s LCW statement. A containment mapping from query) to
query ()2 is a mapping of the symbols of)1 to the symbols in @), for each symbol in Q).
A containment mapping from) to ()2 expresses the fact that all the information produced
by Q2 is a subset of the information produced by @; (i.e. Q2 C Q).

12

We can illustrate the notion of containment mapping with an example. Consider we have
the following user query and the LCW statement for some plan:

query(X, Y) = (Y, X) Ne(X, Z)
e(Y, X)Ne(Z, X) N e(X, Z,) - plan(X, Y)

We can express the containment mapping from the body of the query to the head of the
LCW statement as the function h(z), where h(X) = X, h(Y) = h(Z) =Y, and h(Z,) = Z.
If we apply this mapping, we can transform the plan’s LCW statement into:

e(Y, X) Nel(Y, X)Ne(X, Z) - plan(X, Y)

This makes it clear that the user’s query C the information we know will be generated by
the plan . We can also build a mapping function, g(x), from the user’s query to the LCW
statement. Let g(X) = X,g(Y) =Y, and g(Z) = Z;. This expresses the fact that the
information we know will be generated by the plan C the user’s query. Since we’ve done
containment mappings in both directions, we are sure that the information we know will be
generated by the plan is equivalent to the user’s query.

4.4 Discovering Plan Subsumption

If the query planner finds a plan that can be proven (via containment mappings) to be
conceptually complete, then the search for additional plans can halt since no other plan will
generate more information. We expect, however, that in the real world this is typically not
the case. A more useful real world procedure is to compare if the information produced by
one plan will subsume the information produced by another plan. Even more useful, with
respect to our search procedure for rewrites, is to determine if a plan we have extracted
guarantees to subsume any partial rewrite still in our search queue.

Checking to see if the information produced by plan A subsumes the information produced
by plan B is intuitively merely a process of finding a containment mapping from the LCW
statement for A to the expansion of B. This exact procedure cannot be used, for reasons
pointed out in [Duschka 97], but a slight variant of it can. Given some plan A, let A[s — sAv]
be the result of replacing every information source relation s; in the body of A with the
conjunction of s; and the body of its view. Also let A[s — sV [] be the result of replacing
every information source relation s; in the body of A with the disjunction of s; and the head
of its LCW statement. Given two plans, A and B, then the information produced by A
subsumes that of B if there is a containment mapping from A[s — sV [] to B[s — s A v].

To illustrate, consider that we have the following information sources and their corre-
sponding LCW statements:

13

SOURCEL (X) : wi(X)
wl(X) N w2(X, Y) :- SOURCEl(X)

SOURCE2(X) = wi(X) A w2(X,Y)
wl(X) N w2(X, a) - SOURCE2(X)

SOURCE3(X) : w3(X, Y)
w3(X, a) - SOURCE3(X)
Given the user query
query(X) - wi1(X) ANw3(X, Y)
Assume the query planner found the following two reformulations

planA(X) :- SOURCEL(X) A SOURCE3(X)
planB(X) :- SOURCE2(X) A SOURCE3(X)

The planner can check that planA subsumes planB by first computing the value of planA[s —
s V1], which is planA-1(X) U planA-2(X) U planA-3(X) U planA-4(X) where

planA-1(X) :- SOURCEL(X) A SOURCE3(X)
planA-2(X) - wi(X) AN w2(X, Y) A SOURCE3(X)
planA-3(X) :- SOURCEL(X) A w3(X, a)
planA-4(X) - wi(X) AN w2(X, Y) AN w3(X, a)

and then computing the value of planB[s — s A v] to be

planB(X) :- SOURCE2(X) A wi(X) A w2(X, Y) A
SOURCE3 (X) AN w3(X, Z)

Now if a containment mapping can be found from planA[s — sV [] to planB[s — s A v],
then planA subsumes planB. There is indeed a mapping A(x) from planA-2(X) to planB(X),
where h(X) = X and h(Y) =Y/, so planB can be thrown away since it generates duplicate
information.

We can use the same technique to compare a valid rewrite with rewrites that still contain
world model relations in them (ie. rewrites that are still in our search queue). Consider
that our planner has discovered planA from the previous example, but planB is still in the
following form in the search queue:

planB(X) :- SOURCE2(X) A w3(X, Y)

There is a containment mapping, h(x), from planA[s — s V] to planB[s — s A v], where
h(X) =X and h(Y) =Y, so we can remove planB from the queue. Consider if we had left
planB in the queue. The number of relations in the expression planB[s — s A v] would only
increase. Since there are already enough symbols in the expression to build our containment
map, it must be that case that there will always be enough symbols to build our containment
map. Therefore, we can prune planB from the search space since we are assured any valid
plan produced from it would be pruned anyway.

14

4.5 Query Plan Execution

Query execution is the process of executing plans generated by a query planner. The pri-
mary issues that must be dealt with in query execution are resource constraints and plan
failure. Dealing with resource constraints involves ranking query plans in order to maximize
information gain and minimize querying cost (through parallel queries and non-redundant
queries), and plan failure involves dealing with a query plan that cannot be completed for
some reason.

In the information gathering domain, the primary resource constraint is the cost of ac-
cessing a particular information source. The cost may involve the time needed to answer the
query and return the results over a network, or it might be actual cost, where the owner of
the information gatherer must pay money for an answer to the query. Several variants of
this problem are explored in [Etzioni et al. 96].

In the case that a plan fails to execute because one or more information sources don’t
provide an answer, the executor might mark the information source as no longer functioning,
and ask for a new plan from the query planner. This time, the query planner will not be able
to insert the malfunctioning information source in any plans. When the executor asks for a
new plan from the query planner, it might ask again for the original query, or it could ask for
the portion of the original query that failed. Alternatively, the query planner might return
plans with disjunction in them, that explicitly point out where two information sources might
provide the same information in the case of a failure or timeout.

5 Implemented Systems

There are four systems that fit nicely into the framework of information gathering systems:
Occam/Razor, SAGE, IM (Information Manifold) and Infomaster. All of these information
gatherers make the same assumptions as in this paper about information sources. The first
two are (at least originally) influenced by the work in Al planning, while the last two are
influenced by the work on database query processing. Two other systems, XII and TSIMMIS,
are listed because they share some of the goals of information gathering, although they are
aimed at different problems.

5.1 Occam and Razor

The authors of the Occam planner ([Kwok & Weld 96]) pose query planning as a traditional
Al planning problem, and the algorithms used in different versions of Occam are modelled
after state and plan space planners. A closer look at these systems reveals that the use
of classical planners are used basically for the purpose of “stringing together” information
gathering plans. This exercises only the “backward chaining” (and in the case of original
Occam based on forward state space planners, the “forward chaining”) aspects of these
planning techniques. Action interactions, which in some sense is the critical problem that
these classical planners were designed to solve, are not critical to the pure information
gathering problem. The source inversion approach described here provides a much simpler.
Weld et. al. seem to have realized this too. Razor ([Friedman et al. 97]) was originally

15

written to execute and prune the plans generated by Occam. Pruning was done through
the use of LCW statements, and multiple plans were merged together to more efficiently
gather information. The current version of Razor generates all its own plans apparently
using the source inversion techniques [Duschka & Genesereth 97| described in this paper.
Razor continues to use LCW statements to prune plans, and [Friedman et al. 97] is the first
paper to discuss making use of pairwise subsumption LCW statements.

5.2 SAGE

The Sage system is developed by Knoblock and his co-workers [Arens et al. 96], and was
originally intended to be a query planner for the SIMS project, that deals with heteroge-
neous distributed databases. Sage assumes information source descriptions are complete,
and that no source has query constraints. Sage casts the information gathering problem
as a query reformulation problem. Sage uses a modified version of UCPOP, a classical Al
planner, to search for the correct sequence of reformulation operations that will transform
the user’s query into an equivalent query only on information sources. The problem with
this approach is that it contains all the baggage of a general Al planner to search for refor-
mulation plans, while the view inversion scheme detailed here is much simpler and can solve
the same problem.

5.3 Information Manifold

The Information Manifold is an evolving project by Levy and his co-workers. We base our
dicussion here on the latest published account of the system [Levy et al. 96]. IM generates
plans under the assumption of incomplete sources without query constraints, then it checks
to see if the generated plan can be executed on information sources with query constraints.
If the plan cannot be executed, it is thrown away and no plan is found. The planner makes
use of LCW constraints during planning to prune unnecessary source accesses.

Early work on IM concentrated on the problem of characterizing the information sources,
with an emphasis on efficiently isolating sources relevant to a query. IM was one of the first
systems to popularize the idea of modeling sources as views on a global conceptual database.

IM places a very strong emphasis on finding “coceptually complete” plans. Levy shows
that in the presence of complete information and fully relational sources, a conceptually
complete plan for a conjunctive query cannot have more source calls than the number of
conjuncts in the original query. This is not surprising once we note that once a complete
source relevant to a conjunct of the query is isolated, no other source can give further infor-
mation on that conjunct. Rajaraman et. al. [1995] extend these length bounds to consider
the case where query sources have restrictions. They show that if there is a conceptually
complete plan, then it cannot be longer than the number of conjuncts in the query plus the
number of restricted variables. This result too is easy to see once we realize that we need at
most one source to supply the values of each restricted variable. These length bounds are
used to prune plan generation.

IM’s emphasis on conceptual completeness is problematic in general, since in many cases,
“completeness” of plans in terms of equivalence with the query, is impossible to guarantee.

16

As we mentioned earlier, the main aim of planning for information gathering should be seen
as gathering all available information, rather than to prove that the gathered information is
the only possible information according to the conceptual databases.

5.4 Infomaster

Infomaster, a Stanford Logic group project, apparently makes use of abductive logic to reason
about a user’s query. Not much has been published about the inner workings of the system
other than [Duschka, Genesereth 97].

The source inversion method discussed in this paper was first published by Duschka (a
member of the Infomaster project) in [Duschka 96] and later in [Duschka & Genesereth 97],
but they apparently are not used by the Infomaster system.

5.5 XII and Planning with Incomplete Information

The XII [Golden et al. 96| is a general-purpose planner which was originally designed to
help an autonomous agent plan in the presence of incomplete information. Other planners
of this genre include Cassandra [?] and IPEM [?]. XII can handle both “causative” goals
and “knowledge/information” goals. As an example, one could use XII to first compress all
the “.ps” files in a directory, and then list all files which are below a certain size. The first
is a causative goal, while the second is an information-gathering goal, whose outcome might
change based on the causative actions that the agent might take before considering this goal
(in this case, some of the postscript files which were above the size threshold before the
compression was done, my get below the threshold after the compression, and thus become
eligible tuples for the information gathering goal).

XII can in principle be used to solve the pure information gathering problems, with
source calls modeled as information gathering actions with “knowledge” effects. In fact,
the original work on LCW statements was done in the context of XII [?]. However, use
of XII for pure information gathering turns out to be an over-kill. This is because the
absence of “causative” changes to the environment around the information gathering agent
(the contents of the information sources are not modified by the queries sent to them, for
example) vastly simplifies the planning problem, facilitating specialized methods such as
the ones we described in this paper. The XII methodology may be useful however once
we consider variants of the information gathering problem that model updates to sources
(either made by the information gatherer, or more likely, by the source providers). The work
on maintaining LCW characterizations in the presence of updates, described in [?] may be
particularly relevant here.

5.6 TSIMMIS

The TSIMMIS project doesn’t make use of a world model to integrate information sources,
so it doesn’t fit directly into this framework. Rather, the project is concerned with joining
a static set of two or more information sources together and precomputing all the possible

17

queries that can be answered by this group of information sources. In [Ullman 97|, Jeffry
Ullman compares TSIMMIS with the Information Manifold.

6 Summary

This paper described the information gathering problem, which is that of integrating a
set, of autonomous information sources together so they can be queried as if they were a
single information source. We showed how this problem can be solved under the assumption
that information sources are relational databases by using views to describe the contents
of the information sources. We also showed how local closed world statements can be used
to make our algorithm more efficient by reducing the number of redundant information
gathering plans. We discussed how the information gatherer can deal with failure when some
information source no longer works. Finally, we discussed some implemented information
gatherers and how they relate to the information presented in this paper.

7 Bibliography

References

[Ambros-Ingerson & Steel, 88| J. Ambros-Ingerson and S. Steel. Integrating planning, exe-
cution and monitoring. In Proc. 7th National Conf. on AI. 1988.

[Arens et al. 96] Y. Arens, C. A. Knoblock, W. Shen. Query Reformulation for Dynamic
Information Integration. To appear in Journal of Intelligent Information
Systems, Boston, MA, 1996.

[Duschka 96] Oliver M. Duschka. Generating Complete Query Plans Given Approximate
Descriptions of Content Providers. Stanford technical report, 1996.

[Duschka 97| Oliver M. Duschka. Query Optimization Using Local Completeness. Pro-
ceedings of AAAIL 1997.

[Duschka, Genesereth 97] Oliver M. Duschka and Michael R. Genesereth. Query Planning In
Infomaster. Proceedings of the Twelfth Annual ACM Symposium on Applied
Computing, February 1997.

[Duschka & Genesereth 97] Oliver M. Duschka and Michael R. Genesereth. Answering Re-
cursive Queries Using Views. Proceedings of AAAIL 1997.

[Duschka & Levy 97] Oliver M. Duschka and Alon Levy. Recursive plans for information
gathering. Proceedings of IJCAI 1997.

[Etzioni et al. 97] O. Etzioni, K. Golden and D. Weld. Sound and efficient closed-world rea-
soning for planning. Artificial Intelligence, 89(1-2), 113-148.

18

[Etzioni et al. 96] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madani, and O. Waarts.
Efficient Information Gathering on the Internet. Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS), 1996.

[Friedman et al. 97) Marc Friedman, Daniel S. Weld. Efficiently Executing Information-
Gathering Plans. Submitted to International Joint Conference on Al (I1J-
CAI), 1997.

[Golden et al. 96] Keith Golden, Daniel S. Weld and Oren Etzioni. Planning with
Execution and Incomplete Information. UW CSE TR 96-01-09.
ftp.cs.washington.edu/pub/ai/tr-96-01-09.ps.gz

[Kwok & Weld 96] Chung T. Kwok and Daniel S. Weld. Planning to Gather Information.
Unwversity of Washington technical report UW-CSE-96-01-04, 1996.

[Levy 96] Alon Y. Levy. Obtaining Complete Answers from Incomplete Databases.
Proceedings of the 22nd VLDB Conference, Mumbai (Bombay), India, 1996.

[Levy et al. 95] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries
using views. Proceedings of the 22nd VLDB Conference, Mumbai (Bombay),
India, 1996.

[Levy et al. 96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Hetero-
geneous Information Sources Using Source Descriptions. Proceedings of the
22nd VLDB Conference, Mumbai (Bombay), India, 1996.

[Pryor & Collins, 96] Pryor, L. and Collins, G. Planning for Contingencies: A Decision-
based Approach, Volume 4, pages 287-339.

[Rajaraman et al. 95] Anand Rajaraman, Yehoshua Sagiv, and Jeffry D. Ullman. Answer-
ing Queries Using Templates With Binding Patterns (Extended Abstract)
Proceedings of Principles of Database Systems (PODS), 1995.

[Ullman 89] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Vol-
umes I € II. Computer Science Press, Rockville MD, 1989.

[Ullman 97] Jeffrey D. Ullman. Information Integration Using Logical Views. Invited
talk at the International Conference on Database Theory, Delphi, Greece,
1997.

19

