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CHAPTER 1

INTRODUCTION

Planning, as a sub-discipline of AI, has been around for close to twenty years. While the

formal foundations of the field have grown increasingly sophisticated, progress has been

much slower in terms of applications of AI planning techniques to realistic problems. A

main reason for this has been a lack of adequate models of search-control for classical

planners. To cope with the computational complexity of domain-independent planning,

the planner should be provided with adequate search-control knowledge. A promising

way of developing search-control knowledge is to let the planner utilize speedup learning

techniques to learn such knowledge from its previous problem-solving episodes. One of

the well known speedup learning techniques is Explanation Based Learning (EBL).

Although there has been a considerable amount of research towards applying speedup

learning techniques to planning, almost all of it concentrated on the restrictive state-based

models of planning, as opposed to more flexible and efficient, plan-space partial-order

models of planning [8, 2]. One reason for the concentration of Explanation Based Learning

(EBL) work on state-space planners has been the concern that a sophisticated planner may

make the learning component’s job more difficult (c.f. [9]). This has lead to a somewhat

ironic situation: while much of the work on generative planning is based on plan-space

partial-order planners, the work on learning to improve planning performance continues

to be based on state-space planners. Preferring a state-based planning strategy only to

make learning easier seems to be somewhat unsatisfactory, especially given that plan-space

planning strategies promise to avoid some of the inefficiencies of the state-based planners

in plan-generation.
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This thesis investigates adapting Explanation Based Learning (EBL) techniques to a

plan-space planning framework. The general idea behind explanation based learning (see

Figure 1.1) is as follows: given a problem the planner searches through the space of

possible solutions and returns a solution. EBL analyzes failures and successes in the search

tree explored by the planner and generates search control rules that guide the planner to

avoid the failing paths and bias it toward the successful paths. When the rules are used in

subsequent planning episodes, this could improve the performance of the planner.

Fail Fail Fail Success!!

Planner

EBL
Control
Rules

Problem Solution

Figure 1.1: EBL in Planning

In this thesis, I will describe SNLP+EBL, a system that learns search control rules for

SNLP, a causal-link partial order planner [7, 1]. In this system, when the planner, SNLP

encounters a failure during problem solving, it invokes EBL to learn from failures. EBL

first explains the reason for failure of the partial plan. Then, it regresses the explanation

(the reason for failure) over the planner decisions to explain the reasons for failures at the

ancestor levels of the partial plan. To do this, it combines all the explanations that are

emerging from various failure refinements of a partial plan and propagates explanations up

the search tree. During the propagation, SNLP+EBL also constructs search control rules

that guide the planner to avoid the similar failures.

I will start by describing the basic learning framework of SNLP+EBL including the

details of failures encountered by SNLP, and the initial explanations for these failure and
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regression of failure explanations over the planner decisions, and propagation of these

explanations up the search tree in detail. I will explain generalization of explanations to

construct search control rules. I will then concentrate on SNLP+EBL’s ability to learn

from failures. The most obvious types of failures are those detected by the underlying

planner, SNLP. I will show that these alone do not provide effective learning opportunities

for SNLP+EBL in many domains. This is because often the planner’s local consistency

checks fail to detect the futility of a particular line of reasoning, possibly leading to infinite

looping behavior. Strengthening the planner’s consistency checks to detect these failures

often results in poorer performance because of the increased cost of the consistency check.

To deal with this impasse, I adopt a novel approach of strategically applying stronger

consistency checks to the partial plans crossing depth limits, to detect and explain the

implicit failures in those plans, and learn useful search control rules from these explanations.

I will describe one particular realization of this strategy that utilizes domain axioms

which are readily available physical laws of the domain, (such as ‘‘the same block cannot

be on top of two different blocks’’), to detect and explain inconsistencies (failures) at some

depth-limit search failures. These explanations are then used as the basis for the EBL

process of SNLP+EBL. Since the domain axioms are used to explain a failure, rather than

detect the failure to begin with, they do not unduly increase the per-node cost of the search.

Our experiments show that this method significantly improves SNLP+EBL’s ability to

learn useful search-control rules.

1.1 Overview

The rest of this thesis is organized as follows: the next chapter reviews the previous work

that has been done in speedup learning to improve the performance of state space planners.

Chapter 3 reviews the SNLP planning algorithm with an example. Chapter 4 describes the
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EBL framework that is used in SNLP+EBL, classifies the failures encountered by SNLP

during the planning process. It also describes how to construct explanations for the failures

encountered by SNLP. Chapter 7 explains the generalization process to generalize the rules

learned by SNLP+EBL. Chapter 5 describes regression rules that are used in SNLP+EBL

to explain the failures at ancestor levels. Chapter 6 explains the propagation process that

is used to collect explanations that are emerging from various refinements of a partial plan

and take the conjoined explanation up the search tree. It also explains how search control

rules are constructed from failure explanations. Chapter 8 describes how learning from

analytical failures alone is not sufficient, and it describes a novel strategy for learning

from depth-limit failures using domain axioms. Chapter 9 describes the experiments

conducted to evaluate the effectiveness of search control rules learned by SNLP+EBL and

it shows that SNLP+EBL outperforms SNLP in random blocks world problems. Chapter

10 presents the conclusions and future directions.



CHAPTER 2

BACKGROUND

Given a planning problem, a planner searches through the space of possible solutions and

returns a solution, if one exists. While searching for a solution, planner also explores

some of the paths which do not lead to a solution. In such cases, one way of improving

the performance of the planner is to direct the planner to avoid the failures paths and bias

it towards a solution. Knowledge based learning approaches such as inductive learning,

explanation based learning (EBL) can be used to analyze the paths that are explored by the

planner, and learn search control rules which direct the planner to avoid failure paths and

guide it towards a solution.

Given the traces of planning episodes, EBL analyzes the traces and explains the reason

for the failure or success of the trace. In looking at a problem solver’s trace, there is no

unique failure or success. For this reason, EBL is, in general, given a target concept along

with the problem trace, knowledge about the domain to select what to explain from the

trace. Figure 2.1 (adapted from [8]) shows a high-level schema specifying the input and

output of EBL. As indicated by the schema, EBL begins with a high-level target concept

and training example for that concept. Using the domain theory, a set of axioms describing

the domain, EBL explains why the training example is an instance of the target concept.

The explanation is essentially a proof that the training example satisfies the target concept.

By finding the weakest conditions under which the explanation (proof) holds, EBL will

produce a learned description that is both a generalization of the training example and a

specialization of the target concept. The learned description must satisfy the operationality

criterion, a test which insures that the description will be an efficient recognizer for the

target concept.
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Given:

� Target Concept: A concept to be learned.

� Training Example: An example of the target concept.

� Domain Theory: A set of rules and facts to be used in explaining why the training
example is an instance of the target concept.

� Operationality Criterion: A predicate over descriptions, specifying the form in which
the learned description must be expressed.

Determine:

� A description that is both a generalization of the training example and a specialization
of the target concept, which satisfies the operationality criterion.

Figure 2.1: Specification of EBL (taken from Minton’s thesis)

The operationality criterion is supposed to insure that each of the resulting learned

description, which is converted into a rule, can be efficiently tested to guide the planner

during the problem solving phase. However, the scheme above completely ignores the

cumulative cost of testing the rule. Thus, although the rules may individually be less

expensive to test than the original target concept definition, testing their description may

be considerably more expensive.

To apply the rules learned by the system effectively, learning systems consider various

costs such as application frequency, match cost and benefit of each of these rules to keep the

learned rules in the search-control knowledge. Such systems have been shown to improve

the performance of the base-level planner in many domains.

Given this general description of EBL, one can visualize a standard EBL methodology

for learning search-control rules. This involves (i) identifying target concepts worth learning

from, (ii) analyzing the search tree of the planner to locate and explain the instances of

these target concepts and (iii) regressing the explanations through the successive decisions

in the search tree to learn a variety of search control rules.
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One such learning system, PRODIGY+EBL developed by Minton [8] learns search

control rules and improved performance of the base planner, PRODIGY. In that,

PRODIGY+EBL learns from variety of target concepts like failures, success, goal in-

teraction. In similar to PRODIGY+EBL, another learning system that is developed by

Bhatnagar[2] also learns search control rules for a state space planner, FailSafe. This

system learns useful but potentially over-general control rules, called censors, by declaring

failures early on during the search, building incomplete proofs of the failures, and learning

censors from these proofs. The censors speed up search by pruning away more and more

of the space until a solution is found in the pruned space. To learn quickly, the technique

over-generalizes by assuming that the learned censors are preservable, i.e., remain unvio-

lated along atleast one solution path. A recovery mechanism heuristically detects violations

of this assumption and selectively specializes censors that violate the assumption.

PRODIGY+EBL, and FailSafe learning systems are based on state space planners.

Since most of the recent research in planning concentrated on generative planning based

on plan space planners, in this thesis I adapt the general framework of EBL for a plan space

planner, SNLP, and show that it improves the performance of the base level planner.



CHAPTER 3

ARCHITECTURE OF THE SNLP+EBL SYSTEM

The SNLP+EBL system consists of two main components: the plan-space partial order

planner, SNLP, and the learning component for doing EBL. This chapter describes SNLP’s

architecture, how SNLP interacts with the learner as problems are solved. In later chapters,

I will describe the failures encountered by the planner and initial explanations for these

failures, regression of explanations over the planner decisions, propagation of explanations

up the search tree, rule construction and generalization, which are key parts of the learner.

The planner, SNLP, invokes the learner when it encounters a partial plan which cannot

be refined further, and gives the learner an opportunity to learn from the failure. The learner

generates an initial explanation from the failed partial plan, and regresses the explanation

over the decision taken by the planner to get to the partial plan. It keeps the regressed

explanation at the immediate ancestor of the failed partial plan, as a reason for the failure

of this branch. When all refinements of a partial plan fail, EBL collects and propagates the

explanation of a failure partial plan up the search tree. In the process of propagation, EBL

also generalizes the explanation as described in later chapters. Generalized explanations

are used to construct search control rules which are then used by the planner. Search

control rules typically prune certain paths which are guaranteed to fail, thereby improving

the performance of the planner.

3.1 The base level planner : SNLP

SNLP is a causal-link plan-space planner as, described in [7, 1]. SNLP starts with a null

plan that consists of a set of initial state conditions and a set of flaws1, where the set of flaws

1A flaw is a precondition of a step or an unsafe link in a partial plan
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are initialized with the goal state conditions of the problem at hand. SNLP refines a partial

plan by adding constraints to remove a flaw from the partial plan until it finds all flaws are

removed or the partial plan has an inconsistency. If it finds an inconsistency in a partial

plan, it backtracks in chronological fashion and refines other unexplored possible partial

plans until it expands all possible partial plans or it finds a solution to the problem. Each

partial plan during refinement in SNLP can be seen as 6-tuple: hS; O;B;L; E;F : hG;T ii

where:

� S is the set of actions (step-names) in the plan; S contains two distinguished step

names tI and tG2.

� O is a partial ordering relation, representing the ordering constraints over the steps

in S .

� B is a set of codesignation (binding) and non-codesignation (prohibited bindings)

constraints on the variables appearing in the preconditions and post-conditions of the

operators.

� L is a set of causal links of the form s
p
! w where s;w 2 S and p is an effect

of s and a precondition of w. This constraint is interpreted as: ‘‘s comes before w

and gives p to w. No step in the plan that can possibly come in between s and w is

allowed to necessarily add or delete p.’’

� E is the set of effects of the plan, i.e., has�effect(e; s) such that s 2 S and e is

an effect (add or delete list literal) of s.

� G is the set of preconditions of steps of the partial plan, i.e, precond(c; s) such that

c is a precondition of step s 2 S and there is no link supporting c at s in L.

2To simplify, we removed symbol table ST from the table which maps step names to domain operators

which represent initial step and goal step of a plan
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� T is a set of threats, i.e., tuples of the form hs
p
! w; ti such that s; t; w 2 S ,

s
p
! w 2 L, t has an add or delete list literal q such that q necessarily codesignates

with p, and t can possibly come in between s and w (t is called a threat for s
p
! w).

The threat is resolved by either promoting t to come after w, or demoting it to come

before s (in both cases, appropriately updating O). A threat for a causal link is said

to be unresolvable if all of these possibilities make either O or B inconsistent. The

Flaw list in a partial plan consists of the list of preconditions, G, and the list of unsafe

links, T .

3.1.1 The problem solving process

SNLP starts its planning process with the null plan

hftI ; tGg; ftI ! start; tG ! fing; fhgi; tGig; i

where G is initialized with the top level goals of the problem (which, by convention are the

preconditions of tG, initial state conditions are the effects of tI).

The planning process consists of selecting a flaw from the flaws list and add constraints

to the partial plan such that the flaw is removed. As explained earlier, there are two types

of flaws exist in a partial plan. If the flaw is precond(c; s), SNLP establishes it by using

an effect q of an existing step (simple establishment) or newly introduced step se (step

addition). In either case, the O and B fields of the partial plan are updated to make se

precede s, and q codesignates with c. Finally, to remember this particular establishment

commitment, a causal link of the form se
c
! s is added to L, where se; c; s are the source,

the condition and the destination of the causal link, respectively.

SNLP does not backtrack over the selection of a flaw, but backtracks over the

ways of resolving the flaw (e.g. it considers all possible establishment options for each

precondition). After each establishment, the planner checks to see if there are any threats to
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the new or existing causal links, and updates the threat list T . If the selected flaw is a threat

of the form hs
p
! w; ti, then the planner resolves it by ordering the threat t to come after

the step w (promotion) or by ordering the threat t to come before the step s (demotion). A

partial plan is said to be complete if no flaws exist in the partial plan.

To summarize, the decisions taken by SNLP to resolve flaws are:

� If the flaw is a precondition of a step, possible decisions are:

Simple Establishment: Select a precondition of a step from G and establish it by

using an effect of an existing step in the partial plan.

Step Addition: Select a precondition of a step from G and establish it by using

an effect of a newly introduced step.

� if the flaw is an unsafe link, possible decisions are:

Promotion: Select a threat to be resolved and order the threatening step to come

after the destination of the causal link.

Demotion: Select a threat to be resolved and order the step that is threatening the

causal link to come before the source of the causal link.

All these decisions refine a partial plan to another partial plan. Thus, these decisions

can be seen as STRIPS operators working on plan states. For example, demotion decision

can be seen in STRIPS representation as shown in the Figure 3.1.

Thus the demotion decision requires a causal link s2
p0

! s3 2 L, and a step s1 2 S such

that it is not ordered with respect to s2, and s1 has an effect p00 that unifies with p0. The first

two conditions of the demotion indicates the threat flaw. The last two preconditions of the

demotion are to check demotion is possible or not. The effect of the demotion decision

is that the step s1 is ordered to come before the source, i.e. s2 of the causal link. We will

exploit this STRIPS operator representation of planning decisions in later chapters.
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Demotion(s1; s2)
Preconditions:

s2
p0

! s3 2 L
has�effect(s1; p

00) ^2(p0 � p00)
(s1 � s2) 62 O
(s2 � s1) 62 O

Effects: O O + (s1 � s2)

Figure 3.1: Demotion decision in STRIPS representation
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Figure 3.2: Search Tree illustrating SNLP planning process
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Action Precond Add Dele
Roll(ob) - Cylindrical(ob) Polished(ob) ^ Cool(ob)
Lathe(ob) - Cylindrical(ob) Polished(ob)
Polish(ob) Cool(ob) Polished(ob) -

Figure 3.3: Blocks world domain

Example: Now, let us illustrate SNLP’s planning algorithm on a simple example from a

job-shop scheduling. We will be using this as a running example throughout the thesis. The

shop consists of several machines, including a lathe and a roller that are used to reshape

objects, and a polisher. Given a set of objects to be polished, shaped, etc., the task is to

schedule the objects on the machines so as to meet these requirements. The operators in

this domain are simplified to give a complete trace of the planning process for the above

example.

The search tree in Figure 3.2 illustrates SNLP planning process in terms of an example

from a simple job-shop scheduling domain with the operators shown below:

The initial planning problem is to polish an object A and make its surface cylin-

drical. The object’s temperature is cool in the initial state. Figure 3.2 shows the

complete search tree for the problem. SNLP, given the above problem, starts with

htI ; tG; h precond((CylindricalA); tG) precond((PolishA); tG)ii as the initial partial plan.

SNLP picks up precond(Cylindrical(A);G), from the set of flaws G, and establishes the

precondition with the help of the step 1:Roll(A). It then establishes the other precondition

precond(Polished(A);G) with the step 2:Polish(A). Since step 1 i.e. Roll(A), deletes

Polish(A), it is now a threat to the link 2
Polish(A)
! G. SNLP resolves this threat by demoting

step 1:Roll(A) to come before 2:Polish(A). The step Polish(A) also introduces a

new precondition precond(Cool(A); 2). SNLP establishes it using the effects of the start

state. Since Roll(A) also deletes Cool(A), it threatens the last establishment. When SNLP

tries to deal with this threat by demoting 1 to come before step 0, it fails, since 0 already
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precedes 1. SNLP backtracks chronologically until the point where it has unexplored

alternatives, node A in this example and explores other possible alternative. It achieves

precond((Cool(A); G) using Lathe(A) and then achieves Polished(A) using the operator

Polish(A). It succeeds in this path and returns a solution.



CHAPTER 4

EXPLANATION BASED LEARNING

As observed in earlier chapter, EBL analyzes failures and successes in the search tree

generated by the planner and generates search control rules that guide the planner to avoid

similar failures and bias it towards a success.

Search control rules aim to provide guidance to the underlying problem solver at

critical decision points. As we have seen above, for SNLP these decision points are

the selection of flaws, establishment, including simple-establishment and step-addition

(operator selection); threat selection; and threat resolution, including promotion, demotion.

Of these, it is not feasible to learn goal-selection and threat-selection rules using the

standard EBL analysis since SNLP never backtracks over these decisions.1 SNLP+EBL

system learns search control rules for the other decisions. A search control rule may

either be in the form of a selection rule or a rejection rule. In our current work, we have

concentrated on learning rejection rules (although the basic framework can be extended to

include selection rules).

Unlike systems such as PRODIGY/EBL, which commence learning only after the

planning is completed, SNLP+EBL does adaptive (intra-trial) learning (c.f. [2]), which

combines a form of dependency directed backtracking with the generation of search-control

rules. The planner does depth first search both in the learning and non-learning phases.

During the learning phase, SNLP+EBL invokes the learning component whenever the

planner encounters a failure. Figure 4.1 shows a schematic flow diagram of the EBL

process.

SNLP+EBL starts by generating an explanation of a failure when it is encountered. It

1This doesn’t however mean that threat selection and goal selection order do not affect the performance

of the planner. It merely means that the best order cannot be learned through failure based analysis.
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Explain the
Failure

Regress
Explanations

Collect Explanations
[Propagation ]

Construct
Rules

Figure 4.1: EBL Framework

then regresses the explanation over the planner decisions to explain failure at higher levels.

After regression, it conjoins all the explanations coming from all the lower levels of a node

and propagates it up the search tree. During propagation of the explanation up the search

tree, it constructs search control rules which are in turn used by the planner to avoid similar

failures.

In the following chapters, we will discuss, in detail, each of these phases of EBL

framework.

4.1 Failures and Initial Explanation Construction

SNLP encounters two kinds of failures during its planning process. These are:

� Analytical Failures

These failures are due to ordering or binding inconsistencies in the partial plan

or due to unachievable open conditions.

� Depth Limit Failures
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As said above, a pre-set depth limit has been set during the planning process and

whenever the planner crosses the depth limit, it is considered as a failure partial plan.

Whenever the planner encounters a failure, EBL constructs an explanation for the

failure and regresses the explanation over the planner decisions that led to the failure. An

explanation for a failure of a partial plan is a minimal set of constraints (steps, orderings,

bindings, effects, preconditions and causal links) that are together inconsistent.

4.1.1 Analytical failures

These are the failures SNLP can detect during its planning process. When SNLP encounters

an inconsistency in the partial plan, it declares the partial plan as a failure and backtracks

from that point to explore any unexplored paths. SNLP can detect three kinds of

inconsistencies in the plan and these are :

� Ordering Inconsistencies

These arise when there is a cycle among the orderings of two steps in a

partial plan. For example, whenever two steps s1, and s2 are ordered such that

(s1 � s2) ^ (s2 � s1), then this an inconsistency in the partial plan is detected.

Explanation for the ordering inconsistency is:

(s1 � s2) ^ (s2 � s1)

� Binding inconsistencies

These arise when there is an inconsistency in the bindings. For example, if there

exists a variable X in the partial plan such that (X � A) ^ (X 6� A), then this is an

inconsistency in the partial plan.

An explanation for this binding inconsistency is:

(X � A) ^ (X 6� A)
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� Failure to establish from initial state

When SNLP+EBL selects a precondition flaw to remove, it always attempts to

establish it from initial state irrespective of initial state conditions. For example,

a flaw, precond(has airport(Tempe); s) is selected to be achieved by establish-

ment. SNLP+EBL first establishes a causal link from initial state of the form

(s0
has airport(Tempe)

! s) irrespective of initial state conditions. After establishing the

causal link, it checks whether the condition has airport(Tempe) is present in the

initial state or not. If it is not present in the initial state, there exists an inconsistency,

because the causal link states that the initial state gives the condition and the initial

state conditions state that the condition is not given by it. SNLP declares it as a

failure and an explanation for this inconsistency can be constructed as:

(s0
has airport(Tempe)

! s)

:initially�true(has airport(Tempe))

The above explanation states that there exists a link s0
has airport(Tempe)

! s and the

condition has airport(Tempe) is not present in the initial state of the problem. The

reason for SNLP+EBL to first establish a causal link and then find an inconsistency

in the partial plan is to explore all branches that are possible irrespective of the initial

conditions. This makes the learner consider all the failures that are encountered by

SNLP uniformly irrespective of initial state conditions.

4.1.2 Depth-Limit Failures

When SNLP crosses the preset depth limit, it declares the partial plan at the depth limit

as a failure partial plan and backtracks from that point. The partial plan at the depth

limit may contain inconsistencies which are not recognized by SNLP’s consistency checks.

By applying stronger consistency checks on constraints of the partial plan at depth limit,
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we may be able to recognize such inconsistencies in the partial plan. In chapter 8, we

will explain an instance of this strategy which uses domain-axiom consistency checks to

explain the implicit failures at depth limits, and construct explanations for these failure.

Once an explanation is constructed, EBL regresses it over the planner decisions that led to

the failure. In next chapter, we will discuss the regression process in detail.



CHAPTER 5

REGRESSION

Consider the case where SNLP found an inconsistency in a partial plan P at a node n (see

Figure 5.1). Further suppose that the parent node of n, node n0, contains the decision

d resulting in failure and E is the failure explanation. We would like to know what

constraints of the partial plan, P 0 at node n0, are necessarily responsible for causing the

failure at node n after taking the decision d. The process of computing the constraints at

node n0 that caused the failure after taking the decision d is called the regression.

Node: n

Node: n’

Plan: P

Plan: P’

FAIL

Resolve a flaw by
decision: d

Figure 5.1: A part of a failure branch to explain the regression process

Formally, regression of a constraint c over a decision d is the set of constraints that

must be present in the partial plan before the decision d, such that the decision d adds c

to the partial plan. In state based planners, the decisions correspond closely to applying

operators to world states, and thus regression of an explanation over a decision is very close

to regression over operators. In contrast, the decisions in partial order planners convert a
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partial plan to another partial plan. We thus need to provide a set of rules for regressing

arbitrary constraints of an explanation over the planner decisions.

In discussing regression rules, it is useful to distinguish between two types of constraints:

transitive and non transitive constraints. A constraint is said to be transitive if the presence

of two constraints c1 ^ c2, together imply a third constraint c3, which is not explicitly stated

in the partial plan. In other words, c1 ^ c2 ` c3. For example, ordering and binding

constraints in a partial plan are transitive constraints while causal links, are non transitive

constraints. For example, in Figure 5.2, steps s3 and s4 are not ordered with respect to

each other. But if a decision orders steps s1 and s2, it also transitively orders steps s3 and

s4. In contrast, adding a causal link or a precondition of a step does not create any further

causal links or preconditions.

Regression of non-transitive constraints are easy to handle [11]. Suppose we want to

regress a constraint c over a decision d. If c is added by d, then the regression of c over d is

True. Otherwise the regression of c results in itself. Thus we have

Regress(c; d)

= True, if c 2 add(d) (clause (i))

= c, otherwise (clause (ii))

For a transitive constraint c, regression over a decision d has to consider the case where

the plan before d has constraint c0 and d adds the constraint c00 such that c0 and c00 transitively

entail c. Thus we need an additional rule:

Regress(c; d)

= c0 if c00 2 add(d) ^ (c00 ^ c0) ` c (clause (iii))

It is also possible that there could be multiple different sets of constraints c0 such that

each set of constraints along with c00 could entail c. In such cases, regression of a constraint
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S3 S1 S2 S4

Figure 5.2: An example showing transitive constraints

c over a decision d results in disjunction of all such sets of constraints c0. For the example

in Figure 5.2, assume that s3 precedes s4 before ordering. Then the regression of (s3 � s4)

over the ordering decision (s1 � s2) results in (s3 � s4) _ [(s3 � s1) ^ (s2 � s4)].

Regression of an explanation over a decision d is the conjunction of regressing each

constraint of the explanation over the decision d. If E = c1 ^ c2 ^ ::: ^ ci, then

Regress(E; d) =

Regress(c1; d)^ Regress(c2; d) ^ :::^ Regress(ci; d)

The following table explains the regression of various constraints over the demotion

decision.

(iii) Demotion(s1; s2
p
! s3)

Preconditions: (s1 � s2) 62 O

(s2 � s1) 62 O

s2
p
! s3 2 L

has�effect(s1; p)

Effects: O O + (s1 � s2)

Constraint Result Reason
precond(p0; s0) precond(p0; s0) clause(ii)

s0
p0

! s00 s0
p0

! s00 clause(ii)
has�effect(s0; p0) has�effect(s0; p0) clause(ii)
unifies(p0; p00) unifies(p0; p00) clause(ii)
(s0 � s00) True if (s0 � s1) ^ (s00 � s2) clause(i)

(s0 � s00)_ clause (ii)
[(s0 � s1) ^ (s2 � s00) ] clause (iii)

Since the demotion decision adds only ordering constraints, regression of all the other

constrains such as open conditions and causal links over a demotion decision results in
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themselves (clause (ii)). Since demotion decision adds (s0 � s00), the regression of

(s0 � s00) over the demotion decision is True (clause (i)). Like any ordering decision,

the demotion decision also orders all the steps that precede s1 to come before all the

steps that follow s2. As shown in Figure 5.2, say (s0 � s1) and (s2 � s00) belong to a

partial plan that is present before taking the above demotion decision. After taking the

demotion decision to order s1 to come before s2, s0 is also ordered to come before s00.

Since [(s0 � s1) ^ (s2 � s00)] ^ (s1 � s2)) (s0 � s00), the result of the regression of

the ordering (s0 � s00) over the demotion decision is [(s0 � s1) ^ (s2 � s00)] _ (s0 � s00).

Regression of constraints over a promotion decision is very similar.

Similarly, if we consider regression of constraints over a step addition, step-

add(s1; precond(p0; s2)) which adds a step s1 into a partial plan to achieve precond(p0; s2),

the table of regression results are shown below. Like regression of any constraint over

any decision, all the constraints that are not added by the step addition are regressed to

themselves and the constraints that are added by the step addition are regressed to True.

(i) StepAddition(s1; precond(p0; s2))

Preconditions: precond(p0; s2) 2 G

s0
p0

! s2 62 L

has�effect(s1; p
00)

unifies(p0; p00)

Effects: S  s1

L0  s1
p0

! s2

O0  (0 � s1) ^ (s1 � s2)

B0 unify(p0; p00)

G0 preconditionsofs1 � p0
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F 0 effects(s1)

Constraint Result Reason
precond(q0; s0) True if s0 � s1, clause (i)

precond(q0; s0) otherwise, clause(ii)
has�effect(s0; q0) True if s0 � s1, clause (i)

has�effect(s0; q0) otherwise, clause(ii)
s0

q
! s00 True if s0 � s1, clause(ii)

s0
q
! s00 otherwise, clause(ii)

(s0 � s00) True if s0 � s1 ^ s
00 � s2, clause(ii)

(s2 � s00) if s0 � s1 ^ s00 6� s2, clause(iii)
(s0 � s00) otherwise, clause(ii)

(s0 � s0) True if s0 � s1

(s0 � s0) otherwise, clause(ii)

Regression rules over simple establishment are very similar to regression rules over

step addition and regression rules over promotion decision are same as regression rules

over the demotion decision.

One final observation regarding the use of regression in EBL is that its use in regression

differs from the complete goal regression. As noted earlier, regression ofE over a decision

d sometimes results in a disjunction of E0 _ E00 _ ::. Since the motivation for using

regression is to find out what part of the parent plan is responsible for generating the

failure, we use only that part of explanation which is present in the parent partial plan. In

Figure 5.2, the result of regression of (s3 � s4) over the decision to add (s1 � s2) is

(s3 � s4) _ [(s3 � s1) ^ (s2 � s4)]. SNLP+EBL considers (s3 � s4) as the result of

regression because (s3 � s4) is present in the partial plan.



CHAPTER 6

PROPAGATION OF FAILURE EXPLANATIONS

In earlier chapters, we looked at failures encountered by SNLP and initial explanations for

these failures. We also looked at regression of explanations over the planner decisions.

Next we describe is how the regressed explanations are combined and propagated up the

search tree.

Node: n1

Explanation: E1 Explanation: E2FAIL!! FAIL!!

Node: n2

Node: n

Node: m

Decision: d1 Decision: d2

Regress(E1, d1) = E1’ Regress(E2, d1) = E2’

Explanation: E
Decision: d’

Plan: Pm

Plan: Pn1 Plan: Pn2

Plan: Pn

Decision: d’

Figure 6.1: An example for propagation

Consider the example shown in Figure 6.1. Since both the children nodes n1 and n2 of

a node n failed, we would like the planner to avoid the decision d to generate node n. To

facilitate this, however, we need to compute the constraints in the partial plan Pm at node

m that are responsible for failure of node n. In order to compute the constraints at node m

we regress the explanation of failure at node n over the decision, as explained earlier. To

do this, we first need to compute the explanation of failure at node n. Suppose that n1 and

n2 are failure nodes with partial plans Pn1 and Pn2 and failure explanations are E1 and E2

respectively. Suppose further that these nodes are generated from node n to remove a flaw,

say F , by taking decisions d1 and d2 respectively. Assume that these are the only two
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different ways of removing the flaw1. As explained earlier, E1 and E2 are regressed over

d1 and d2 to give rise to E10 and E20. Since both of these branches failed to remove the

flaw F , and these are the only two choices, the partial plan P at node n cannot be refined

to a successful partial plan. To compute the explanation E at node n, we note that as long

as the flaw F exists at node n, the decisions d1 and d2 will be taken and both these will

lead to failure. Thus the explanation of the failure at node n is:

E(n) =Constraints describing the F law^

Regress(E1; d1) ^Regress(E2; d2)! (i)

In other words, the general propagation rule to compute an explanation of a failure at

node n which has failing children n1::np corresponding to decisions d(n1); ::; d(np) is

E(n) =Constraints describing the F law^

Regress(E(n1); d(n1)) ^Regress(E(n2); d(n2)) ^ ::: ^Regress(E(np); d(np))

E(n) = Constraints describing the F law^

V
8ni ^ Regress(E(ni); d(ni))! (i)

In the above rule (i), n1, n2, .. np are all possible children nodes of node n and d(ni) denotes

the decision that is taken to get to the node ni from its parent node n and E(ni) denotes the

explanation at node ni. The resultant explanation E at node n can now be regressed over

d to compute the constraints under which the decision d will necessarily lead to a failure

from the node m.

Example: Let us consider the search tree described in the Figure 6.2, which shows the

lower part of the failure branch of the example that is described in chapter 3.1.1. When

SNLP failed at node H and I in the Figure 6.2, EBL explains these failures in terms

of ordering inconsistencies as shown in the figure. When we regress the explanation of

1refer to refinement search
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(COOL A)

(COOL A)
(0 2)

(COOL A)
(0 2)

1 20 G

(COOL A)

(CYLIND A)

(POLISH A)

Node E

((2
(POLISH A)

G), 1)

0

(CYLIND A)

(POLISH A)
(COOL A)

2 G

Legend: 

solid-line : precedence

dashed-line : causal-link
< : precedence
1 : ROLL(A)
2 : POLISH(A)
0 : start
G : fin
= : codesignates
P : any-condition
S : any step
?x : any object

cylind : cylindrical

 2), 1)demotion((0

Explanation:
((0 < 1) (1 < 2))

has-effect(1 (COOL A))

establishment
Node G

demotion

Explanation:

has-effect(1 (COOL A))

precond((COOL A) 2))

((0 < 1) (1 < 2))

(initial explanation)

Explanation:((0 < 1) (1 < 0))

(initial explanation)

   Node H                      Node I
Fail

Explanation:((1 < 2) (2 < 1))

Fail

Figure 6.2: Failure branch of the the example described in Figure 3.2.

node H over the demotion((0
(Cool A)
! 2); 1), it results in the ordering constraint (0 � 1).

Similarly when we regress the explanation of node I over the promotion((0
(Cool A)
! 2); 1),

it results in the ordering constraint (2 � 1). Now, at node G, we have two explanations

for the failure of the branches H and I . According to (i), the explanation at node G is:

E(G)

= Constraints describing the Unsafe link flaw ^ (0 � 1) ^ (1 � 2)

= (0
(Cool A)
! 2) ^ has�effect(1; (Cool A)) ^ (0 � 1) ^ (1 � 2)

The above resultant explanation at node G is also shown2 in the Figure 6.2. The

explanation at node G can be interpreted as, if there are three steps s1, s2 and s3 such that

(s1 � s2)^ (s2 � s3) and if an unsafe link of the form ((s0
(CoolA)
! s2); s1), exists in a partial

plan, prune the node from search space, because as long as the unsafe link flaw exist in the

partial plan, the planner will take demotion and promotion which will lead to failure.

2In the Figure 6.2, the unsafe link flaw is represented as (0
(Cool A)
! 2) ^ has�effect(1; (Cool A)).
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6.1 Avoiding overspecific explanations in propagation

The propagation process as described above may sometimes give overspecific explanations.

To see this, consider the example described in Figure 6.3.

0 O3 O1 G

P1Q1

(Q2, O1) (P2, G)

0 O1 G

P1

(Q1, O1)

(Q2, O1)
(P2, G)

0 G

(P1, G)
(P2, G)

0 G

P1

(P2, G)

O2

(R1, O2)

0 O1 G

P1Q1

(Q2, O1) (P2, G)

O4

Step-Add(O1 G)
P1

G)
P1

Fail!! Fail!! 

Q1
Step-Add(O3 O1)

Step-Add(O2

Step-Add(O4
Q1

O1)

Node: A

Node: B Node: C

Node: D Node: E

Explanation E1: (Q2, O1) AND

not-initially-true(Q2)

Explanation E2: (Q2, O1) AND

not-initially-true(Q2)

Figure 6.3: An example for dependency directed backtracking

In Figure 6.3, both children of the node B failed to achieve a precondition flaw

precond(Q2; O1), since Q2 is not given by either the domain operators or by the initial

state. Based on previous discussion, EBL constructs initial explanations for these failures

as shown in the Figure 6.3. According to the propagation rule described earlier, the

explanation at node B will be:

E(B) =precond(Q1; O1)^Regress(E1, Step-Add(O3
Q1
! P1))

^ Regress(E2, Step-Add(O4
Q1
! P1))

= precond(Q1; O1) ^ precond(Q2; O1) ^ :initially�true(Q2)

The explanation above at node B has an additional flaw precond(Q1; O1), which is

certainly redundant, since it is clear that the node B will fail as long as the precondition

precond(Q2; O1) exists in the flaw list and Q2 is not given by the initial state3. Clearly in

3The assumption is that the domain operators do not change from problem to problem. Search control

rules generated by EBL are sound, only if the domain description does not change.
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this case the explanation of failure at node B is same as the explanation at child node D.

To handle this, we change the propagation such that when regression does not change an

explanation of a failure of a node n, the complete explanation of failure at the parent node

of n will be the same as explanation of failure of node n. Specifically,

E(n) =

Regress(E1; d1); If Regress(E1; d1) = E1! (i)

Constraints describing the flaw^

Reg(E1; d1) ^ Reg(E2; d2); Otherwise! (ii)

In other words, the general propagation rules to compute an explanation at node n is:

E(Parent(n)) =

Regress(E(ni); d(ni)); If Regress(E(ni); d(ni)) = E(ni)! (i)

Constraints describing the flaw^

8ni ^ Regress(E(ni); d(ni)); Otherwise! (ii)

In rule (i), notice that we do not conjoin results of regression of explanations of other

siblings of node ni, if the regression does not change the explanation E(ni) over the

decision d(ni). This is because E(ni) is an inconsistent constraints set (i.e. P (ni) has no

potential solutions). When the regression of E(ni) is not changed when it is regressed

over the d(ni) implies that E(ni) is present in the partial plan at node n. This means

that the partial plan at node n, P (n), has a set of inconsistent constraints, same as E(ni).

Consequently, P (n) also has no potential solutions. Thus, no refinement of the plan P (n)

will lead to a solution 4.
4Decisions in a refinement planning add constraints to a plan and do not remove any constraints from it.

Note that flaws are not part of constraints of a plan.
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6.1.1 Dependency directed backtracking

The preceding discussions suggests a methodology for exploiting the explanation and

regression procedures to do dependency directed backtracking. In particular, suppose we

are folding the propagation into the search process. If an explanation of a node n, E(n),

does not change after regressing it over a decision d(n), then the planner can safely prune

all the other siblings of node n. Thus, an explanation E(n) can be taken all the way

up without expanding the outstanding siblings until E(n) changes after regression over a

decision.

In the example described in Figure 6.3, since the explanation of failure at node D

did not change after regression over step-add, planner can prune the other sibling of the

node D i.e. node E, and continue the propagation of explanation above node B with the

Explanation same as the explanation of failure node D.

The actual implementation of SNLP+EBL folds the propagation into the search process

to provide a default dependency directed backtracking. Figure 6.4 shows the full description

of the propagation algorithm.

6.2 Rule Construction

In SNLP+EBL, rules are learned during propagation of explanations up the search tree.

Since SNLP+EBL explains only failures in the current implementation, only rejection rules

are learned5. Given a failure explanation E for a node N , a rule can be learned to reject

node N as follows:

IF E

REJECT NODE

5The SNLP+EBL framework can be easily extended to explain successes and learn preference rules
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Procedure Propagate(E(ni); d(ni))
(d(ni): decision taken get to node ni from its parent node;
P (ni): partial plan at node ni; E(ni): explanation of failure at ni).
0. Set d d(ni)
1. E0 Regress((E(ni); d)
2. If E 0 = E, then set d d(Parent(ni)); Goto Step 1. (a form of DDB)
3. If E 0 6= E(ni), then

3.1. If there are unexplored siblings of ni
3.1.1 Make a rejection rule rejecting the decision d(ni), with E0

as the antecedent generalize it and store it in the rule set
3.1.2. E(Parent(ni)) E(Parent(ni)) ^ E 0

3.1.3. Restart search at the first unexplored sibling of node ni
3.2. If there are no unexplored siblings of ni,

3.2.1. Set E(Parent(ni)) E(Parent(ni)) ^ E 0 ^
Constraints that describe the flaw that the decision d(ni) is removing
3.2.3. Set ni  Parent(ni), E(ni) = E(Parent(ni))
Set d(ni) d(Parent(ni)); Goto Step 1.

Figure 6.4: Propagating Failure Explanations

The rule above states that if an explanation E holds at a node, then that node can be

pruned from the search tree. We can also construct another rules that reject decisions from

consideration. Suppose the failure explanation E is regressed over a decision d and the

resultant explanation is E0. Then we can learn a rule as follows:

IF E 0

REJECT d

The rule above states that if E0 holds at a node and if d is a decision choice then the

planner can reject the decision d from the choices.

Now, let us look at the example explained in Figure 3.1.1. and see how rules are

learned. In this example after constructing an initial explanation for node H , a rule can be

learned to reject a node, as shown below:

IF (s0 � s1) ^ (s1 � s0) 2 O
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REJECT NODE

This rule states that if there exists an ordering cycle in a partial plan of a node, then

reject the node. Since the planner is going to check the inconsistency in the plan, learning

this particular rule will not be very useful in improving the performance. Specifically, the

match cost is not offset by the savings.

At this point, the planner regresses the explanation over the demotion decision to

explain the failure of branch H . After regression, a rule can be generated as

IF (s0 � s1)

REJECT demotion(s0
(Cool A)
! s2; s1)

The rule states that if (s0 � s1) 2 O, then do not take the demotion decision. Similarly,

SNLP+EBL could learn a rule at node B to reject a node in search tree if the explanation

at node B holds with the node. In other words:

IF (s0 � s1) ^ (s1 � G) ^

precond((Polish A); G) ^

has�effect( s1; (Cool A) ) ^

has�effect( s1; (Polish A) ) ^

:initially�true( Polish A )

REJECT NODE

This rule says, if there is a step s1 which deletes (Cool A) ^ (Polish A) and it comes in

between two steps s0 and G, and G requires a precondition (Polish A), and (Polish A) is

not true in the initial state, then reject the node.

The explanation regressed over the establishment decision at B can be used to learn

a useful step establishment rejection rule at A (since A still has unexplored alternatives).

This rule is shown to the left of node A. It says that Roll should be rejected as a choice
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for establishing any condition at goal step G, if (Polish A) is also a goal at the same step.

Notice that the rule does not mention the specific establishment (Cylindrical A), that lead

to the introduction of Roll. This is correct because the failure explanation at node B does

not involve (Cylindrical A).6

The rules above are in terms of object A and these are not applicable, if we are solving

the similar problem with another object B. This limitation on rule applicability can be

overcome and in the next chapter we will look at how to generalize these rules such that

these rules are applicable in more situations.

6It is interesting to note that in a similar situation, Prodigy [9] seems to learn a more specific rule which

depends on establishing (Cylindrical A).



CHAPTER 7

GENERALIZATION

Until now, we have seen how SNLP+EBL learns search control rules from the failures

encountered by SNLP. Now, let us look at the usage of these search control rules and their

role in improving the performance.

Consider the following rule that is generated by SNLP+EBL, which is shown in the

Figure 7.1.

This rule states that if the objectA needs to be Polished and it is not Polished initially,

then the planner should not add Roll to achieve (Cylindrical A) at step Goal. If the

planner is given the same problem again, SNLP can use the advice of the above rule and

avoid adding the step Roll to achieve (CylindricalA), which is guaranteed to fail. Since

the planner is left only with one other operator, Lathe, it applies this operator and succeeds.

Thus, a rule advises the planner not to generate branches that will lead to failures and,

consequently improves the performance.

Now, assume that the planner is given a new problem which involves making an object

B; Cylindrical and Polished. This new problem has same goals as the earlier problem

but it involves a different object B instead of the object A. SNLP cannot take the advice

from the above rule because the above rule states that it is applicable only if we are making

the object A Cylindrical and Polished (and only if these are the top-level goals of the

IF precond((Polish A); Goal) 2 G ^
:initially�true(Polish A)

REJECT stepadd((Roll A)
(Cylindrical A)
! Goal)

Figure 7.1: Rejection rule
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plan). However, it is clear that the above rule can advice the planner not to add the operator

Roll to achieve (Cylindrical B), even if we are dealing with object B. To make this

rule applicable in cases where we are dealing with other objects, we need to remove the

specific object names such as A and step names such as Goal from the rule and replace

with variables1, while preserving the soundness of the rule.

For a moment, let us discuss about the soundness of a rule. Whenever the constraints

of a rule are applicable in a partial plan, the planner SNLP, takes the advice from the rule

and rejects generating a branch by adding the decision of the rule to the partial plan. In

general, a rule is said to be sound if it does not effect the completeness of the underlying

planner. Soundness can be defined in multiple ways:

� Strong Soundness: there are no solutions under the branch that is rejected by the

planner.

� Minimal Soundness: there are no minimal solutions existing under the branch that

is rejected by the planner (where a solution is minimal if no operator sequence

produced by removing steps from it is a solution).

� Solution Soundness: there could be solutions under the branch that is rejected by the

planner, but there exists atleast one other solution in the over all search space.

All the above criterion for soundness of a rule preserve the completeness of the

underlying planner (that is, if there exists a solution for a problem, the planner is guaranteed

to find it). For example, if the planner takes the advice of the rule in Figure 7.1 and

rejects adding the operator Roll to achieve Cylindrical, then the rule guarantees that there

exists atleast one solution in other branches of the search tree. But the rules learned by

SNLP+EBL are sound according to criterion (i), which guarantee that there are no solutions

1an object variable matches with any object of the domain and a step variable with any step of a partial

plan as long as all the other constraints of a rule hold in the partial plan.
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Figure 7.2: An example to explain generalization process in SNLP+EBL

under the rejected branch. In this chapter, we will describe how to generalize the rules that

are learned by SNLP+EBL such that the rules are applicable in more than one problem

while preserving the soundness of the rule.

We start by noting that generalization involves replacing specific step-names such as

Goal and object-names such as A with variables, without losing the soundness of a rule.

For a generalized rule to be sound (i.e. taking its advice will not affect the completeness of

the underlying planner), all of the instances of the generalized rule must be sound. Ideally,

we would like to remove all the step-names and object-names from a rule and replace these

names with variables. But this may not preserve the soundness of the rule, since some

names may have to be present in the rule for the failure to occur. We will show later a

situation where replacing all the names of a rule with variables will lead to the loss of the

soundness of the rule.

Traditionally, the generalization in EBL is done by starting with a variablized explana-

tion and variablized decisions and redoing the complete regression process, specializing the
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explanation along the way [8]. In SNLP+EBL, we use single pass generalization scheme,

where we begin by variablizing the initial explanation that is constructed by SNLP+EBL.

Consider the example described in Figure 7.2, where the goals required are P1 and P2 and

initially only P1 is true. The planner removes the flaw precond(P1; G) and establishes

(0 P1
! G) from the initial state (denoted by 0, in the figure). It then adds the new operator2

O1 to remove the flaw precond(P2; G). But the operator O1 deletes P1, which threatens

the establishment from initial state. Planner tries to order O1 to come before the initial

state by demotion and orders O1 to come after G by promotion. Both these branches fail

because of ordering inconsistencies. The initial explanation constructed by the planner for

demotion failure is

E = (0 � s1 : O1) ^ (s1 � 0)

Immediately, after constructing the above initial explanation, SNLP+EBL variablizes

by replacing names with variables where 0 in the explanation is replaced with ?s0, O1 is

replaced with ?s1 and to remember the bindings, these are kept in a list of bindings.

E = (?s0 � ?s1) ^ (?s1 � ?s0) ^

h(?s0 ! 0); (?s1! O1)i

After variablizing the initial explanation, and keeping the bindings in a separate list,

it regresses the explanation over variablized decisions (for example, demotion(?s0
P1
!

?sg; ?s1) with h(?s0 ! 0); (?sg ! G); (?s1 ! O1)i corresponds to the variablized version

of demotion(0 P1
! G;O1)) 3. As explained earlier, SNLP+EBL conjoins explanations from

various branches of a node and propagates the explanation up the search tree. At any point,

SNLP+EBL generates a rule as explained earlier, but removes the bindings between names

2steps are instances of operators
3Note that the predicates of a causal link are not variablized. Since the predicates will be again introduced

into explanations during regression, variablizing the predicates will not help much in generalization
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and variable, thus leaving the variables in the rule. Since an object variable could be

matched with any object of the domain, the rule can be applied in more than one problem,

if the other constraints of the rule are met by the partial plan.

If a failure occurrs because of a specific object or a step in the partial plan, then

removing all the bindings between names and variables will lead to unsound rules. If a

specific object name or a step is required, then the regression of a binding over a planner

decision will result in True and replacing all the instances of the variable with the name in

the explanation.

To automate this process, we just need to formalize the regression of bindings between

names and variables over the planner decisions. Consider a step-name binding h(?s0 ! 0)i

over various decisions. As noted earlier, regression of a constraint c over a decision

d regresses to itself, if d did not add the constraint c. During planning, whenever the

planner, SNLP, introduces a new step s1 into a partial plan, s1 is replaced with ?s1 and

this replacement is noted down by adding a step-binding h?s1 ! s1i into the partial plan.

Step addition is the only one decision that introduces the bindings between step names and

variables. Therefore, from earlier discussion of regression in Chapter 5

Regress(h?s1 ! s1i, stepadd(s1; precond(p0; s2)))

= True

Regress(h?s! si, stepadd(s1; hp0; s2i))

= (h?s! si)

where step addition decision is given by StepAdd(s1; precond(p0; s2))

Preconditions: precond(p0; s2) 2 G

s0
p0

! s2 62 L

has�effect(s1; p
00)

unifies(p0; p00)
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Effects: S  s1

L0  s1
p0

! s2

O0  (0 � s1) ^ (s1 � s2)

B0 unify(p0; p00)

G0 precond(s1)� p0

F 0 effects(s1)

But from the above definition, it is clear that stepadd orders the newly added step s1 to

come after initial step 0 and adds (0 � s1) into the partial plan. When it orders, it also adds

a step-binding h?s0 ! 0i into the partial plan in order to treat all the steps in a partial plan

as variables and these step-bindings are noted down in the list of step-bindings. When it

regresses h?s0 ! 0i over the stepadd, it results in True, since it is added by the decision.

Since, this binding requires only the initial state to be constant, when we regress, all the

instances of ?s0 in the explanation are replaced with 0 (or I , a short hand notation of initial

state).

The general idea behind the above regression process of bindings over various decisions

is that the binding results in itself, if the decision does not add that binding. It results in a

specific constant if that specific step name is required by a decision.

Let us consider the example described in Figure 7.2 to explain the above regression

process. Initial explanations at leaf nodes are generalized by replacing step-names

with variables and regressed over the variablized demotion and promotion decisions

respectively. The resultant explanation at node C is (see Figure 7.2):

E(C)

= Constraints of F law ^ Regress(E1; demotion) ^Regress(E2; promotion)

= (?s0
P1
! sg) ^ has�effect(?s1; P1)^

(?s0 � ?s1)^
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(?s1 � ?sg)^

h(?s0 ! 0); (?s1! O1); (?sg ! G)i

When the above explanation is regressed over stepadd(s1; precond(P2; sg)), it results

in the following explanation.

Regress(E(C); stepadd)

= (I P 1
!?sg) ^ h(P2; ?sg)i ^ h(?sg ! G)i

In the above explanation, ?s0 is replaced with I , because when we regressed h?s0 ! 0i

results in True and replaces all the instances of ?s0 in the explanation with I . If a step is

specified by a name instead of variable, the step can be matched with the particular instance

of the step and not any other step in the partial plan. In our example, I in the explanation

matches with only the initial step and not with any other step in the plan. Thus, if a specific

step name is required, regression process introduces that name into the explanation.

Let us look at the generalization of object-names. If an initial explanation requires an

object to be a specified by a name, it cannot be generalized. For example, consider the

following initial explanation4.

(0
On(A;B)
! G) ^ hClear(B); 1i ^ (0 � 1); (1 � G) ^ (B 6� Table)

This explanation states that if we need Clear(B) at a step 1 where B is not a Table and

if the step 1 comes in between steps 0 and G, and (0
On(A;B)
! G) exists in the partial plan,

it will fail. The variablized version of the above explanation does not replace the Table

with a variable, since the failure occurred because of B not being a Table. Therefore, the

variablized version of the above explanation is:

(?s0
On(?A;?B)
! ?sG) ^

4we will show that when SNLP+EBL learns from depth-limit failures, it starts with these kind of initial

explanations.
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hClear(?B); ?s1i ^

(?s0 � ?s1); (?s1 � ?sG) ^

(?B 6� Table) ^

h(?s0 ! 0); (?s1! 1); (?sg ! G)(?A! A); (?B ! B)i

Whenever SNLP+EBL generates a rule from a generalized explanation, it removes

only the codesignation bindings between the names and variables. It does not remove

any non-codesignation bindings since these bindings are produced by the decisions or

initial explanations as explained above5. By using the above explanation, if SNLP+EBL

generates a rule, it will be as follows, which has no codesignation bindings between names

and variables.

IF (?s0
On(?A;?B)
! ?sG) ^

hClear(?B); ?s1i ^

(?s0 � ?s1); (?s1 � ?sG) ^

(?B 6� Table) ^

REJECT NODE

7.1 Rule Storage

Once a rule is generalized, it is entered into the corpus of control rules available to the

planner. These rules thus become available to the planner in guiding its search in the

other branches during the learning phase, as well as subsequent planning episodes. In

storing rules in the rule corpus, SNLP+EBL makes some bounded checks to see if an

isomorphic rule is already present in the stored rules. In this thesis, we ignored issues such

as monitoring the utility of learned rules, and filtering bad rules. Part of the reason for this

5From our generalization method, it should be clear that if two variables are not denoted by same symbol,

then these two variables are two different steps or objects.
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was our belief that utility monitoring models developed for state-space planners [4, 10]

would also apply for plan-space planners.



CHAPTER 8

LEARNING FROM DEPTH LIMIT FAILURES

In earlier chapters, we described the framework for learning search control rules from

failures that are recognized by SNLP. As mentioned in Chapter 4, the only failures

explained by standard SNLP+EBL are the ordering and binding inconsistencies, which it

detects during threat resolution (the unestablishable condition failure is rare in practical

domains). The rules learned from such failures were successful in improving performance

of SNLP in some synthetic domains (such as DmS2� described in [1]).

Unfortunately however, learning from analytical failures alone turned out to be

infeasible in many domains. The reason is that the planner crosses a pre-set1 depth limit

before it encounters a failure or a success as shown in the following Figure 8.1.

Fail Fail

Fail

Depth Limit

Figure 8.1: A search tree showing depth limit failures

The main reason for this turns out to be that, in many cases, SNLP goes into an

unpromising branch and continues adding locally useful, but globally useless constraints

(steps, orderings, bindings) to the plan, without making any progress towards solution.

An example here might help to see why SNLP gets into infinite loops. In Figure

8.2, SNLP achieves On(A;B) at G by establishing it from initial state. Then it tries to

1depth limit is set to avoid searching for infinitely long plans
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achieve On(B;C) at G by introducing a new step S1 (which corresponds to an operator

Puton(B;C)), and ordering S1 to come in between initial state S0 and goal state G. But

the newly added step S1 requires Clear(B) as one of its preconditions. Since there are

no ordering or binding inconsistencies in the partial plan, SNLP without realizing any

inconsistencies in the partial plan, it tries to achieve all the preconditions of all steps in the

partial plan. But before it attempts to achieve Clear(B), it could possibly cross depth limit.

In this chapter, we will describe how SNLP+EBL explains implicit failures at depth limits

and learn from these failures.

S0 G

Establishment(S0 G)
On(A, B)

S0

S1

G

On(A, B)

On(B, C)Clear(B)

On(B, C)
Step-Add(PUTON(B, C) G)

A

B C

Initial State

A

B

C

Goal State

S0 G

On(A, B)

On(B, C)

Crosses Depth Limit

Figure 8.2: An example showing a branch of a search tree that may possibly cross depth
limit

In general, if a branch of a node crosses a depth limit, the partial plan at the depth limit is

non-optimal and extending such plans to generate a complete plan may not be desired, and

such plans can be pruned from consideration. But when a branch crosses a depth limit, no
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analytical explanation can be given, since the partial plan at depth limit is not inconsistent

according to planner’s consistency checks. As noted in Chapter 6, an explanation at an

intermediate node in a search tree is the conjoined explanation of all the possible children

explanations and the constraints describing the flaw. If we do not explain the reason for

pruning the partial plan at depth limit, then we cannot construct an explanation for a node

which has some branches that failed analytically, and a branch that crossed a depth limit.

Since most of the branches of a problem cross depth limits in recursive domains, it limits

EBL’s ability to learn effective search control rules.

Since depth-limit failures are not analytical, no domain-independent explanation can

be given to these failures. However, sometimes it is possible to use strong consistency

checks based on the domain-theory as well as the meta-theory of the planner to show that

the partial plan at the depth-limit contains a failure that the planner’s consistency checks

have not yet detected. Consider the previous example, the partial plan at node C is shown

below:

START

(ON A B)

(CLEAR B)

(ON B C)

1:PUTON(B C) GOAL

Given the blocks world domain axiom that no block can have another block on top of it,

and be clear at the same time, and the SNLP meta-theory that a causal-link, s1
c
! s2, once

established, will protect the condition c in every situation between s1 and s2, we can see

that the above partial plan can never be refined into a successful plan. To generalize and

state this formally, we define the np�conditions, or necessarily persistent conditions, of a

step s0 in a plan P to be the set of conditions supported by any causal link, such that s0

necessarily intercedes the source and destination of the causal link.

np�conditions(s0) = fcjs1
c
! s2 2 L ^ s1 � s0 ^ s0 � s2g

Given the np�conditions of a step, we know that the partial plan containing it can never
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be refined into a complete plan as long as precond(s0) [ np�conditions(s0) is inconsistent

with respect to domain axioms.2 However, SNLP’s local consistency checks will not

recognize this, leading it sometimes into an indefinite looping behavior of repeatedly

refining the plan in the hopes of making it complete. In the example above, this could

happen if SNLP tries to achieve Clear(B) at step 1 by adding a new step s3 : Puton(x; y),

and then plans on making On(x;B) true at s3 by taking A off of B, and putting x on B.

When such looping makes SNLP cross depth-limit, SNLP+EBL uses the np�conditions

based consistency check, to detect and explain this implicit failure, and learn from that

explanation.

To keep the consistency check tractable, SNLP+EBL utilizes a restricted representation

for domain axioms (first proposed in [3]): each domain axiom is represented as a conjunction

of literals, with a set of binding constraints. The table below lists a set of domain axioms

for the blocks world. The first one states that y cannot have x on top of it, and be clear,

unless y is the table.

On(x; y) ^ clear(y)[y 6� Table]
On(x; y) ^On(x; z)[y 6� z]

On(x; y) ^On(z; y)[x 6� z; y 6� Table]

A partial plan is inconsistent whenever it contains a step s such that the conjunction

of literals comprising any domain-axiom are unifiable with a subset of conditions in

np�conditions(s) [ precond(s). Given this theory, we can now explain and learn from the

blocks-world partial plan above. The initial explanation of this failure is: start
On(x;y)
!

G ^ (start � 1) ^ (1 � G) ^ precond(Clear(y);1)^ y 6� Table. This explanation

can be regressed over the planning decisions to generate rules.

The type of analysis described above can be used to learn from some of the depth-limit

2In fact the plan will also fail if effects(s0 ) [ np�conditions(s0) is inconsistent. However, given any

action representation which makes STRIPS assumption, these inconsistencies will any way be automatically

detected by the normal threat detection and resolution mechanisms.
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(1) Reject establishment start
On(x;y)
! s1

If precond(On(y; z); s1)^
:initially�true(On(y; z))^ :binds(y; Table)

(2) Reject promotion s1 � s3

If precond(clear(x2); s3)^
establishes(s1; On(x1; x2); s2)^
precedes(s3; s2) ^ :binds(x2; Table)

(3) Reject step addition puton(x0; y)
Clear(z)
! s1

If establishes(start; On(x; y); s2)^
precedes(s1; s2)^ :binds(y; Table)^

Figure 8.3: A sampling of rules learned using domain-axioms in Blocks world domain

failures3 In the blocks world, use of this technique enabled SNLP+EBL to produce several

useful search control rules. Figure 8.3 lists a sampling of these rules. The first one is an

establishment rejection rule which says that if On(x; y)^On(y; z) is required at some step,

then reject the choice of establishing On(x; y) from the initial state, if initial state is not

giving On(y; z).

3When the analysis unearths multiple failure explanations for a depth-limitplan, we prefer the explanations

containing steps introduced at shallower depths (in our case, smaller step numbers). This tends to help the

dependency direct backtracking component during the learning phase



CHAPTER 9

EXPERIMENTS

Until now, we have described the learning framework in SNLP+EBL and showed how

these rules could improve the performance of the system. Providing search control rules to

a planner alone is not sufficient. Planner needs to match every rule from the rule storage at

every decision point. The cost to match rules could offset the benefits provided by the rules.

In this chapter, we present the results of two sets of experiments conducted to evaluate the

effectiveness of the rules learned by the system. The objective of the experiments was to

show that the rules learned by SNLP+EBL improve the performance of the planner over

the baselevel planner.

First, we have conducted experiments on random blocks world problems without any

constraints on the problem characteristics. In these problems, the planner did not do much

of search as these problems turned out to be very easy to solve. For this reason, we

have conducted two sets of experiments in blocks world domain. In the first set of the

experiments the planner was given random initial states and goal states with 3-block (e.g

(On A B) (On b C)) stacks. In the second set of the experiments the planner was given

random problems with a constraint on the minimum size of the problem.

Setup: Initial states and goal states of the problems in each test case are generated using the

procedure defined in [8]. This procedure takes two parameters MAX-BLOCKS and MAX-

GOALS. First, the number of blocks, from 3 to MAX-BLOCKS is generated randomly.

To generate the initial state, the following sub-procedure is used, For each block, with

probability 1/3 put it on the table, otherwise randomly select a previously generated stack,

and place the block on top. To create goal states, the same subprocedure used to generate

the initial state is used. Then a set of goals is selected as follows. Each of assertions in
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the goal state is filtered with probability 2/3 if it is true in the initial state. Then a random

number, from 1 to MAX-GOALS, of these assertions are conjoined to form goal state. If

all the goals are already in the initial state the procedure is repeated.

For each test set, the planner was run on a set of randomly generated problems to learn

search control rules. During the testing phase, the two test sets of problems were run

with SNLP, SNLP+EBL (with the saved rules). To evaluate the relative effect of EBL vs

domain-axiom based check, we also have run a different version of SNLP, SNLP+Domax,

which uses domain axioms based consistency checks. Specifically, SNLP+Domax uses

domain axioms based consistency checks to see a partial plan is inconsistent with the

domain theory. If it finds inconsistency in the partial plan, it prunes the branch as soon

as it is generated. Applying such strong consistency checks at every decision point while

planning increases the cost of generating a node. Thus, we predicted that the use of domain

axioms based consistency checks increases the cost of the planning unduly and does not

perform better than SNLP+EBL, which uses domain axioms to generate search control

rules at the depth limits to explain failures.

A cpu time limit of 120 seconds was used in each test set. If the planner takes more

than 120 seconds to solve a problem, the planner aborts the search and returns as failed.

We chose to compare the cpu time limits so that it takes the matching cost of the rules1 into

account while providing the performance improvements by the search control rules.

Test Set I: This set consists of 30 problems that had randomly generated initial states

consisting of 3 to 8 blocks and the goal states consisting of only one 3-block stack.

SNLP+EBL was run on 20 random problems to learn search control rules from the failures

encountered by the planner. SNLP+EBL learned 10 search control rules from these 20

problems and these rules are used during the testing phase.

1matching cost of a rule is the cost that is taken by the planner to match a rule against the partial plan at a

decision point
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Test Set II: This set consists of 100 problems had randomly generated initial states

consisting of 3 to 8 blocks and random goal states. SNLP+EBL was run on 50 random

problems to learn search control rules from the failures encountered by the planner.

SNLP+EBL learned 15 search control rules from these 50 problems and these rules are

used during the testing phase.

In both of these test sets, a rule is added into the rule storage, if it is used atleast once

while learning the rules. Since very few number of rules learned in each test set, we did not

do any sophisticated utility analysis like average matching cost into consideration to add a

rule into the rule storage.

Results: Table 9.1 describes the results of these experiments. Figure 9.1 shows

the cumulative performance graphs for the three methods in the second test set. Our

results clearly show that SNLP+EBL was able to outperform SNLP in terms of cpu time

significantly on these problem populations. The results about SNLP+Domax also show

that learning search-control rules is better than using domain-axioms directly as a basis for

stronger consistency check on every node generated during planning. This is not surprising

since checking consistency of every plan during search can increase the refinement cost

unduly. EBL thus provides a way of strategically applying stronger consistency checks.

Finally, the fact that SNLP+EBL fails to solve 19% of the test problems in the second

set shows that there may be other avenues for learning search control rules. We intend to

explore these in our future work (see chapter 10).
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Test Set SNLP SNLP+EBL SNLP+Domax

% Solv C. time % Solv C. time % Solv C. time

I (30 prob) 60% 1767 100% 195 97% 582

II (100 prob) 51% 6063 81% 2503 74% 4623

Table 9.1: Results from the blocks world experiments
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

In this thesis, we presented SNLP+EBL, the first systematic implementation of EBL

search-control learning in a partial-order planner. We have described the details of the

initial explanation construction, regression and explanation propagation, and rule learning

process in SNLP+EBL. We have then proposed a general methodology for learning from

planning failures, viz., using a battery of stronger consistency checks based on the meta-

theory of the planner, and the domain theory of the problem, to detect and explain failures

at depth limits. We described a specific instantiation of this method, which uses domain

axioms to look for inconsistencies in the plans at depth limits, and presented experimental

results showing that the search control rules that SNLP+EBL learns using this technique

enable it to outperform SNLP.

The current work shows that EBL provides a way of strategically applying domain-

axiom-based consistency checks. Finally, in this thesis, I ignored issues such as monitoring

the utility of learned rules, and filtering bad rules. Part of the reason for this was our belief

that utility monitoring models developed for state-space planners [4, 10] will also apply

for plan-space planners. In our future work, better utility models can be incorporated into

SNLP+EBL.

Learning from domain-axiom failures alone may not be sufficient in domains which do

not have any strong implicit domain theory. In future, identifying other types of stronger

consistency checks which can be used to complement the domain-axiom techniques in

such domains and learn search control rules will be an interesting area to explore. These

include using the full finite-domain variable consistency checks to learn to avoid certain

types of variable-based looping, utilizing domain-specific theories of loop detection to
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avoid step-based looping, as well as using strong causal link consistency checks as a way

of learning about conflict deferment [12]. Applying the EBL methodolgy that is used in

SNLP+EBL for a planner with better representation of actions and allows universal and

existential conditions such as UCPOP will be interesting. Currently, my colleague Yong

Qu is conducting experiments on the effectiveness of EBL on UCPOP.



APPENDIX A

Issues Regarding Soundness of SNLP+EBL’s Search Control Rules
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As explained in chapter 7, a rule is said to be sound if it does not affect the completeness

of the underlying planner. It can be defined in different ways as follows:

� Strong Soundness: there are no solutions under the branch that is rejected by the

planner.

� Minimal Soundness: there are no minimal solutions existing under the branch that

is rejected by the planner (where a solution is minimal if no operator sequence

produced by removing steps from it is a solution).

� Solution Soundness: there could be solutions under the branch that is rejected by the

planner, but there exists atleast one other solution in the over all search space.

All the above criteria for soundness of a rule preserve the completeness of the underlying

planner (that is, if a problem is solvable, the planner is guaranteed to solve it). In chapter

7, we argued that the rules learned by SNLP+EBL preserve strong soundness.

In order to preserve the strong soundness, a rule should guarantee that it is not removing

any solution from the search space. When the planner fails during the search, it invokes

the learner to learn a search control rule. Learner constructs an initial explanation for the

failure as explained in 4.1. The initial explanation for any failure is a set of inconsistent

constraints. Since a plan with inconsistent constraints cannot be refined to a successful

plan, rules that are constructed from the initial explanations are sound.

A rule that is learned from an explanation at an intermediate node of the search tree is

sound only if the explanation of the node accounts for all the failures of the branches under

that node. For this, an explanation at any intermediate node should be the conjunction of

the failure explanations emerging from all the branches under that node. To construct a

sound explanation at any intermediate node, the planner should thus explore all branches

of that node and explain the failures for all those branches. However, the planner may not
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generate some branches under a node because of existing constraints in the partial plan of

the node. For example, suppose s1 and s2 are two steps in a partial plan and s1 � s2 and

s2 has an effect p, and s1 needs the condition p. The planner will not generate a simple

establishment branch to achieve p at s1 from the step s2. If we learn a rule here, we want

to know whether that the rule would be applicable in another situation where s1 6� s2.

The issue thus becomes one of ensuring that all possible and potential search branches are

properly accounted for in generating a failure explanation. In following paragraphs, we

explain how this is done.

While planning, at any node the planner, SNLP, resolves a conflict or achieves an open

condition at a step. For resolving a conflict, the planner has only two choices to order the

threat by promotion or by demotion. To resolve a conflict, we modified SNLP such that it

always generates two branches to account for promotion and demotion irrespective of the

constraints in the partial plan.

For achieving an open condition at a step, the planner has two choices to achieve the

open condition by step addition or by simple establishment. Since the number of operators

available in the domain are fixed, the number of branches that are generated by the step

addition are fixed irrespective of the constraints in the partial plan. However, the number

of simple estbalishment branches under a node are not fixed since the number of steps in a

partial plan that can give an open condition depends on the constraints in the partial plan.

Simple establishments can be seperated into two categories, establishments from initial

state and establishments from steps other than initial state. We will treat these two cases

differently.

Simple establishments from initial state: Since initial state changes from problem to

problem, the number of simple establishment branches from initial state may vary too. For

example, suppose we are trying to achieve a condition p at a step s and we fail. Suppose

further that in the current partial plan, p is not true in the initial state. It is possible that had
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initial state gave p, the failure would have been avoided. To handle this, we can do one of

two following things:

� Qualify the Explanation: Qualify the failure explanation with a constraint,

:initially�true(p).

� Counterfactual Reasoning: The approach of qualifying explanations may lead us

sometimes to over specific explanations. For example, it may be that the simple

estblishment from initial state to achieve p at s would have failed even if p were true

in the initial state. In such cases, we can get more general but sound explanations

by doing counterfactual reasoning i.e. assume p is given by initial state and check

the simple establishment from initial state still fail. If it fails, the qualification is not

necessary.

Since counterfactual reasoning can be expensive, we use the first approach of qualifying

the explanation in our implementation.

The approach of qualifying the explanation will not work well in cases where the failed

condition is non propositional. For example, suppose we were trying to achieve P (x) at a

step s. Suppose that initial state currently has P (A) and we fail to achieve P (x) at s under

these conditions. Now, we need to qualify that the initial state gives only P (A) and not

P (B), P (C) etc,. In other words, the qualification is

x 6� A) :initially�true(P (x))

While this is possible to do, the resulting explanations can be too specific and also expensive

to match.

In our current implementation, we simply avoid learning from any failure branches

corresponding to uninstantiated goals. Fortunately, efficient planning anyway demands

that the planner prefer working on maximally instantiated open conditions. Therefore, this

restriction does not affect the efficiency of the learner. Now, we have completed explaining
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about simple establishments from the initial state. The final issue is simple establishments

from steps other than the initial state.

Simple establishments from steps in the partial plan: In order to generate a sound ex-

planation at a node, simple establishment branches pose a problem since the number of

simple establishment possibilities change from problem to problem. In SNLP+EBL, we

currently consider only those explanations that account for failures of establishments that

are generated by the planner.

It may look as if we need to consider explanations of all possible establishment failures

and conjoin these explanations along with other explanations of the node. All possible

establishments include the establishments that are actually generated by the planner as well

as establishments that could have been possible, if certain ordering constraints or binding

constraints are not present in the partial plan. This is not required because even though

certain simple establishments are not generated by the planner because of the constraints

in the partial plan, planner considers all the step-addition possibilities involving the same

operators. If it fails to establish an open condition from a step because of ordering or

binding constraints, it must be because it can not do so even if it were allowed to have fresh

copies of all the operators. Thus, learner need not conjoin the explanations of the branches

that did not give the condition because of ordering or binding constraints in the partial plan.
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