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CHAPTER 1

INTRODUCTION

Planning, as a sub-discipline of Al, has been around for close to twenty years. While the
formal foundations of the field have grown increasingly sophisticated, progress has been
much slower in terms of applications of Al planning techniques to realistic problems. A
main reason for this has been a lack of adequate models of search-control for classical
planners. To cope with the computational complexity of domain-independent planning,
the planner should be provided with adequate search-control knowledge. A promising
way of developing search-control knowledge is to let the planner utilize speedup learning
techniques to learn such knowledge from its previous problem-solving episodes. One of
the well known speedup learning techniquesis Explanation Based Learning (EBL).
Although there has been a considerable amount of research towards applying speedup
learning techniques to planning, almost all of it concentrated on the restrictive state-based
models of planning, as opposed to more flexible and efficient, plan-space partial-order
models of planning [8, 2]. One reason for the concentration of Explanation Based Learning
(EBL) work on state-space planners has been the concern that a sophisticated planner may
make the learning component’ s job more difficult (c.f. [9]). This has lead to a somewhat
ironic situation: while much of the work on generative planning is based on plan-space
partial-order planners, the work on learning to improve planning performance continues
to be based on state-space planners. Preferring a state-based planning strategy only to
make |earning easier seems to be somewhat unsatisfactory, especially given that plan-space
planning strategies promise to avoid some of the inefficiencies of the state-based planners

in plan-generation.



This thesis investigates adapting Explanation Based Learning (EBL) techniques to a
plan-space planning framework. The general idea behind explanation based learning (see
Figure 1.1) is as follows: given a problem the planner searches through the space of
possible solutions and returnsa solution. EBL analyzes failures and successes in the search
tree explored by the planner and generates search control rules that guide the planner to
avoid the failing paths and bias it toward the successful paths. When the rules are used in

subsequent planning episodes, this could improve the performance of the planner.
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Figure 1.1: EBL in Planning

In this thesis, | will describe SNLP+EBL, a system that learns search control rules for
SNLP, a causal-link partial order planner [7, 1]. In this system, when the planner, SNLP
encounters a failure during problem solving, it invokes EBL to learn from failures. EBL
first explains the reason for failure of the partial plan. Then, it regresses the explanation
(the reason for failure) over the planner decisions to explain the reasons for failures at the
ancestor levels of the partial plan. To do this, it combines all the explanations that are
emerging from various failure refinements of apartial plan and propagates explanations up
the search tree. During the propagation, SNLP+EBL aso constructs search control rules
that guide the planner to avoid the similar failures.

| will start by describing the basic learning framework of SNLP+EBL including the

details of failures encountered by SNLP, and the initial explanations for these failure and



regression of failure explanations over the planner decisions, and propagation of these
explanations up the search tree in detail. | will explain generalization of explanations to
construct search control rules. | will then concentrate on SNLP+EBL’s ability to learn
from failures. The most obvious types of failures are those detected by the underlying
planner, SNLP. | will show that these alone do not provide effective learning opportunities
for SNLP+EBL in many domains. This is because often the planner’s local consistency
checksfail to detect the futility of a particular line of reasoning, possibly leading to infinite
looping behavior. Strengthening the planner’s consistency checks to detect these failures
often results in poorer performance because of the increased cost of the consistency check.
To deal with this impasse, | adopt a novel approach of strategically applying stronger
consistency checks to the partial plans crossing depth limits, to detect and explain the
implicit failuresinthose plans, and learn useful search control rulesfrom these explanations.

| will describe one particular realization of this strategy that utilizes domain axioms
which are readily available physical laws of the domain, (such as ‘‘the same block cannot
be on top of two different blocks' ), to detect and explain inconsistencies (failures) at some
depth-limit search failures. These explanations are then used as the basis for the EBL
process of SNLP+EBL. Since the domain axioms are used to explain afailure, rather than
detect the failure to begin with, they do not unduly increase the per-node cost of the search.
Our experiments show that this method significantly improves SNLP+EBL’s ability to

learn useful search-control rules.

1.1 Oveview

The rest of this thesis is organized as follows: the next chapter reviews the previous work
that has been done in speedup learning to improve the performance of state space planners.

Chapter 3 reviewsthe SNLP planning algorithm with an example. Chapter 4 describesthe



EBL framework that is used in SNLP+EBL, classifies the failures encountered by SNLP
during the planning process. It also describes how to construct explanations for the failures
encountered by SNLP. Chapter 7 explainsthe generalization processto generalizetherules
learned by SNLP+EBL. Chapter 5 describes regression rules that are used in SNLP+EBL
to explain the failures at ancestor levels. Chapter 6 explains the propagation process that
is used to collect explanations that are emerging from various refinements of a partial plan
and take the conjoined explanation up the search tree. It also explains how search control
rules are constructed from failure explanations. Chapter 8 describes how learning from
analytical failures alone is not sufficient, and it describes a novel strategy for learning
from depth-limit failures using domain axioms. Chapter 9 describes the experiments
conducted to evaluate the effectiveness of search control ruleslearned by SNLP+EBL and
it shows that SNLP+EBL outperforms SNLP in random blocks world problems. Chapter

10 presents the conclusions and future directions.



CHAPTER 2

BACKGROUND

Given a planning problem, a planner searches through the space of possible solutions and
returns a solution, if one exists. While searching for a solution, planner also explores
some of the paths which do not lead to a solution. In such cases, one way of improving
the performance of the planner is to direct the planner to avoid the failures paths and bias
it towards a solution. Knowledge based learning approaches such as inductive learning,
explanation based learning (EBL) can be used to analyze the paths that are explored by the
planner, and learn search control rules which direct the planner to avoid failure paths and
guide it towards a solution.

Given the traces of planning episodes, EBL analyzes the traces and explains the reason
for the failure or success of the trace. In looking at a problem solver’s trace, there is no
unique failure or success. For thisreason, EBL is, in general, given atarget concept along
with the problem trace, knowledge about the domain to select what to explain from the
trace. Figure 2.1 (adapted from [8]) shows a high-level schema specifying the input and
output of EBL. As indicated by the schema, EBL begins with a high-level target concept
and training example for that concept. Using the domain theory, a set of axioms describing
the domain, EBL explains why the training example is an instance of the target concept.
The explanation is essentially a proof that the training exampl e satisfies the target concept.
By finding the weakest conditions under which the explanation (proof) holds, EBL will
produce a learned description that is both a generalization of the training example and a
specialization of the target concept. The learned description must satisfy the operationality
criterion, atest which insures that the description will be an efficient recognizer for the

target concept.



Given:
e Target Concept: A concept to be learned.
e Training Example: An example of the target concept.

e Domain Theory: A set of rules and facts to be used in explaining why the training
exampleis an instance of the target concept.

e Operationality Criterion: A predicate over descriptions, specifying theform inwhich
the learned description must be expressed.

Determine:
e A descriptionthat is both ageneralization of thetraining example and aspecialization

of the target concept, which satisfies the operationality criterion.

Figure 2.1: Specification of EBL (taken from Minton’s thesis)

The operationality criterion is supposed to insure that each of the resulting learned
description, which is converted into a rule, can be efficiently tested to guide the planner
during the problem solving phase. However, the scheme above completely ignores the
cumulative cost of testing the rule. Thus, athough the rules may individually be less
expensive to test than the original target concept definition, testing their description may
be considerably more expensive.

To apply the ruleslearned by the system effectively, learning systems consider various
costs such as application frequency, match cost and benefit of each of these rulesto keep the
learned rules in the search-control knowledge. Such systems have been shown to improve
the performance of the base-level planner in many domains.

Given this general description of EBL, one can visualize a standard EBL methodol ogy
for learning search-control rules. Thisinvolves(z) identifying target conceptsworth learning
from, (zz) analyzing the search tree of the planner to locate and explain the instances of
these target concepts and (z2z) regressing the explanations through the successive decisions

in the search tree to learn avariety of search control rules.



One such learning system, PRODIGY +EBL developed by Minton [8] learns search
control rules and improved performance of the base planner, PRODIGY. In that,
PRODIGY+EBL learns from variety of target concepts like failures, success, goal in-
teraction. In similar to PRODIGY +EBL, another learning system that is developed by
Bhatnagar[2] also learns search control rules for a state space planner, FailSafe. This
system learns useful but potentially over-general control rules, called censors, by declaring
failures early on during the search, building incomplete proofs of the failures, and learning
censors from these proofs. The censors speed up search by pruning away more and more
of the space until a solution is found in the pruned space. To learn quickly, the technique
over-generalizes by assuming that the learned censors are preservable, i.e., remain unvio-
lated along atleast one solution path. A recovery mechanism heuristically detectsviolations
of this assumption and selectively specializes censors that violate the assumption.

PRODIGY+EBL, and FailSafe learning systems are based on state space planners.
Since most of the recent research in planning concentrated on generative planning based
on plan space planners, in thisthesis | adapt the general framework of EBL for a plan space

planner, SNLP, and show that it improves the performance of the base level planner.



CHAPTER 3

ARCHITECTURE OF THE SNLP+EBL SYSTEM

The SNLP+EBL system consists of two main components. the plan-space partial order
planner, SNLP, and the learning component for doing EBL . This chapter describes SNLP's
architecture, how SNLP interacts with the learner as problems are solved. In later chapters,
| will describe the failures encountered by the planner and initial explanations for these
failures, regression of explanations over the planner decisions, propagation of explanations
up the search tree, rule construction and generalization, which are key parts of the learner.

The planner, SNLP, invokes the learner when it encounters a partial plan which cannot
berefined further, and givesthelearner an opportunity to learn from thefailure. The learner
generates an initial explanation from the failed partial plan, and regresses the explanation
over the decision taken by the planner to get to the partial plan. It keeps the regressed
explanation at the immediate ancestor of the failed partial plan, as areason for the failure
of this branch. When all refinements of a partia plan fail, EBL collects and propagates the
explanation of afailure partial plan up the search tree. In the process of propagation, EBL
also generalizes the explanation as described in later chapters. Generalized explanations
are used to construct search control rules which are then used by the planner. Search
control rules typically prune certain paths which are guaranteed to fail, thereby improving

the performance of the planner.

3.1 Thebaselevel planner : SNLP

SNLP is a causal-link plan-space planner as, described in [7, 1]. SNLP starts with a null

plan that consists of aset of initial state conditionsand aset of flaws', wherethe set of flaws

LA flaw is a precondition of a step or an unsafe link in a partial plan



areinitialized with the goal state conditions of the problem at hand. SNLP refines a partial
plan by adding constraints to remove aflaw from the partial plan until it finds all flaws are
removed or the partial plan has an inconsistency. If it finds an inconsistency in a partial
plan, it backtracks in chronological fashion and refines other unexplored possible partial
plans until it expands all possible partial plans or it finds a solution to the problem. Each
partial plan during refinement in SNLP can be seen as 6-tuple: (S,0,B,L,E,F : (G, T))

where:

e S isthe set of actions (step-names) in the plan; S contains two distinguished step

namest; and tg2.

e O isapartia ordering relation, representing the ordering constraints over the steps

inS.

e B isaset of codesignation (binding) and non-codesignation (prohibited bindings)
constraints on the variables appearing in the preconditions and post-conditions of the

operators.

e L isaset of causa links of the form s & w where s,w € S and p is an effect

of s and a precondition of w. This constraint is interpreted as: ‘*s comes before w
and gives p to w. No step in the plan that can possibly come in between s and w is

allowed to necessarily add or delete p.”’

e £ isthe set of effects of the plan, i.e.,, has—ef f ect (e,s) suchthat s € S and e is
an effect (add or deletelist literal) of s.

G isthe set of preconditions of steps of the partial plan, i.e, precond(c, s) such that

c isaprecondition of step s € S and thereisno link supporting c at s in L.

2To simplify, we removed symbol table S7° from the table which maps step names to domain operators

which represent initial step and goal step of aplan
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o T isaset of threats, i.e., tuples of the form (s % w,¢) such that s,t,w € S,
s B w e L, t hasan add or delete list literal ¢ such that ¢ necessarily codesignates
with p, and ¢ can possibly come in between s and w (¢ is called athreat for s 5 w).
The threat is resolved by either promoting ¢ to come after w, or demoting it to come
before s (in both cases, appropriately updating O). A threat for a causal link is said
to be unresolvable if al of these possibilities make either O or B inconsistent. The
Flaw listin apartial plan consists of thelist of preconditions, G, and thelist of unsafe

links, 7.

3.1.1 The problem solving process

SNLP starts its planning process with the null plan

<{t[,tg}, {t[ — start ,tg — fi n}, {<gi,tg>},>

where G isinitialized with the top level goals of the problem (which, by convention are the
preconditions of ¢¢, initial state conditions are the effects of ¢;).

The planning process consists of selecting aflaw from the flawslist and add constraints
to the partial plan such that the flaw is removed. As explained earlier, there are two types
of flaws exist in a partial plan. If the flaw is precond(c, s), SNLP establishes it by using
an effect ¢ of an existing step (simple establishment) or newly introduced step s. (step
addition). In either case, the O and B fields of the partial plan are updated to make s,
precede s, and g codesignates with ¢. Finally, to remember this particular establishment
commitment, a causal link of the form s. 5 s is added to £, where s., ¢, s are the source,
the condition and the destination of the causal link, respectively.

SNLP does not backtrack over the selection of a flaw, but backtracks over the
ways of resolving the flaw (e.g. it considers all possible establishment options for each

precondition). After each establishment, the planner checksto seeif there are any threatsto
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the new or existing causal links, and updates thethrest list 7. If the selected flaw isathreat
of the form (s % w, t), then the planner resolves it by ordering the threat ¢ to come after
the step w (promotion) or by ordering the threat ¢ to come before the step s (demotion). A
partial planissaid to be completeif no flaws exist in the partial plan.

To summarize, the decisions taken by SNLP to resolve flaws are:

¢ If theflaw isaprecondition of astep, possible decisions are:

Smple Establishment: Select a precondition of a step from G and establish it by

using an effect of an existing step in the partial plan.

Step Addition: Select a precondition of a step from G and establish it by using

an effect of anewly introduced step.

e if the flaw isan unsafe link, possible decisions are:

Promotion: Select athreat to be resolved and order the threatening step to come

after the destination of the causal link.

Demotion: Select athreat to be resolved and order the step that isthreatening the

causal link to come before the source of the causal link.

All these decisions refine a partial plan to another partial plan. Thus, these decisions
can be seen as STRIPS operators working on plan states. For example, demotion decision
can be seen in STRIPS representation as shown in the Figure 3.1.

Thusthe demotion decision requiresacausal link s; LN s3 € L,andastep s; € S such
that it is not ordered with respect to s,, and s; has an effect p” that unifieswith p’. The first
two conditions of the demotzon indicates the threat flaw. The last two preconditions of the
demotion are to check demotion is possible or not. The effect of the demotion decision
is that the step s is ordered to come before the source, i.e. s, of the causal link. We will

exploit this STRIPS operator representation of planning decisionsin later chapters.



Demotion(sl, 32)
Precondi ti ons:
So £’> s3€ L
has—ef f ect (s1,p") A O(p’
(Sl ~< 32) € O
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Effects: O «— O +(s1 < s2)

~p")

Figure 3.1: Demotion decision in STRIPS representation
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Figure 3.2: Search Tree illustrating SNLP planning process
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| Action | Precond | Add | Dele |
Roll(ob) - Cylindrical(ob) | Polished(ob) A Cool(ob)
L athe(ab) - Cylindrical(ob) Polished(ob)
Polish(ob) | Cool(ob) | Polished(ob) -

Figure 3.3: Blocks world domain

Example:  Now, let usillustrate SNLP s planning algorithm on asimple example from a
job-shop scheduling. We will be using this as arunning example throughout the thesis. The
shop consists of several machines, including a lathe and a roller that are used to reshape
objects, and a polisher. Given a set of objects to be polished, shaped, etc., the task is to
schedule the objects on the machines so as to meet these requirements. The operators in
this domain are ssimplified to give a complete trace of the planning process for the above
example.

The search treein Figure 3.2 illustrates SNLP planning processin terms of an example

from a simple job-shop scheduling domain with the operators shown below:

The initial planning problem is to polish an object A and make its surface cylin-
drical. The object’s temperature is cool in the initial state. Figure 3.2 shows the
complete search tree for the problem. SNLP, given the above problem, starts with
(t1,tg, ( precond((Cylindrical A), t¢) precond((PolishA),t¢s))) astheinitial partial plan.
SNLP picks up precond(Cylindrical(A), G), from the set of flaws G, and establishes the
precondition with the help of the step 1: Rol | (A). It then establishes the other precondition
precond(Polished(A), G with the step 2: Pol i sh(A). Sincestep 1i.e. Rol | (A), deletes
Polish(A), itisnow athreat tothelink 2 “*“) G SNLP resolvesthis threat by demoting
step 1: Rol | (A) to come before 2: Pol i sh(A). The step Pol i sh(A) aso introduces a
new precondition precond(Cool(A),2). SNLP establishes it using the effects of the start
state. Since Rol | (A) also deletes C'ool(A), it threatensthe | ast establishment. When SNLP

tries to deal with this threat by demoting 1 to come before step 0, it fails, since O already
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precedes 1. SNLP backtracks chronologically until the point where it has unexplored
aternatives, node A in this example and explores other possible alternative. It achieves
precond((Cool(A), G) using Lat he(A) and then achieves Polished(A) using the operator
Pol i sh(A). It succeeds in this path and returns a solution.



CHAPTER 4

EXPLANATION BASED LEARNING

As observed in earlier chapter, EBL analyzes failures and successes in the search tree
generated by the planner and generates search control rules that guide the planner to avoid
similar failures and bias it towards a success.

Search control rules aim to provide guidance to the underlying problem solver at
critical decision points. As we have seen above, for SNLP these decision points are
the selection of flaws, establishment, including simple-establishment and step-addition
(operator selection); threat selection; and threat resolution, including promotion, demotion.
Of these, it is not feasible to learn goal-selection and threat-selection rules using the
standard EBL analysis since SNLP never backtracks over these decisions! SNLP+EBL
system learns search control rules for the other decisions. A search control rule may
either be in the form of a selection rule or a rejection rule. In our current work, we have
concentrated on learning rejection rules (although the basic framework can be extended to
include selection rules).

Unlike systems such as PRODIGY/EBL, which commence learning only after the
planning is completed, SNLP+EBL does adaptive (intra-trial) learning (c.f. [2]), which
combines aform of dependency directed backtracking with the generation of search-control
rules. The planner does depth first search both in the learning and non-learning phases.
During the learning phase, SNLP+EBL invokes the learning component whenever the
planner encounters a failure. Figure 4.1 shows a schematic flow diagram of the EBL
process.

SNLP+EBL starts by generating an explanation of a failure when it is encountered. It

1This doesn’t however mean that threat selection and goal selection order do not affect the performance

of the planner. It merely means that the best order cannot be learned through failure based analysis.
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Figure4.1: EBL Framework
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then regresses the explanation over the planner decisions to explain failure at higher levels.
After regression, it conjoins al the explanations coming from all the lower levels of anode
and propagates it up the search tree. During propagation of the explanation up the search

tree, it constructs search control rules which are in turn used by the planner to avoid ssimilar

In the following chapters, we will discuss, in detail, each of these phases of EBL

framework.

e Analytical Failures

4.1 Failuresand Initial Explanation Construction

SNLP encounters two kinds of failures during its planning process. These are:

These failures are due to ordering or binding inconsistencies in the partial plan

or due to unachievable open conditions.

e Depth Limit Failures
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Assaid above, apre-set depth limit has been set during the planning process and

whenever the planner crosses the depth limit, it is considered as afailure partial plan.

Whenever the planner encounters a failure, EBL constructs an explanation for the
failure and regresses the explanation over the planner decisions that led to the failure. An
explanation for a failure of a partial plan is aminimal set of constraints (steps, orderings,

bindings, effects, preconditions and causal links) that are together inconsistent.

411 Analytical failures

These arethefailures SNL P can detect during its planning process. When SNL P encounters
an inconsistency in the partial plan, it declares the partial plan as a failure and backtracks
from that point to explore any unexplored paths. SNLP can detect three kinds of

inconsistencies in the plan and these are :

e Ordering Inconsistencies

These arise when there is a cycle among the orderings of two steps in a
partial plan. For example, whenever two steps s;, and s, are ordered such that
(s1 < s2) A (s2 < s1), then this an inconsistency in the partial plan is detected.
Explanation for the ordering inconsistency is.

(51 < s2) A (82 < 51)

¢ Binding inconsistencies

These arise when there is an inconsistency in the bindings. For example, if there
existsavariable X in the partial plan such that (X ~ A) A (X # A), thenthisisan
inconsistency in the partial plan.

An explanation for this binding inconsistency is:

(X ~ A) A (X & A)
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e Failureto establish frominitia state

When SNLP+EBL selects a precondition flaw to remove, it always attempts to
establish it from initial state irrespective of initial state conditions. For example,
aflaw, pr econd(has_airport(Tempe), s) is selected to be achieved by establish-
ment. SNLP+EBL first establishes a causal link from initial state of the form

has_airport(Tempe)
—

(so s) irrespective of initial state conditions. After establishing the
causal link, it checks whether the condition has_airport(Tempe) is present in the
initial state or not. If it isnot present in theinitial state, there exists an inconsistency,
because the causal link states that the initial state gives the condition and the initial
state conditions state that the condition is not given by it. SNLP declares it as a
failure and an explanation for this inconsistency can be constructed as:

(So has_airpit(Tempe) s)

—i ni tially—true(has_airport(Tempe))

has_airport(Tempe)
—

The above explanation states that there exists a link sy s and the
condition has_airport(Tempe) is not present in theinitial state of the problem. The
reason for SNLP+EBL to first establish a causal link and then find an inconsistency
inthe partial planisto exploreall branchesthat are possible irrespective of theinitial
conditions. This makes the learner consider all the failures that are encountered by

SNLP uniformly irrespective of initial state conditions.

4.1.2 Depth-Limit Failures

When SNLP crosses the preset depth limit, it declares the partial plan at the depth limit
as a failure partial plan and backtracks from that point. The partial plan at the depth
[imit may contain inconsistencies which are not recognized by SNLP s consistency checks.

By applying stronger consistency checks on constraints of the partial plan at depth limit,
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we may be able to recognize such inconsistencies in the partial plan. In chapter 8, we
will explain an instance of this strategy which uses domain-axiom consistency checks to
explain the implicit failures at depth limits, and construct explanations for these failure.
Once an explanation is constructed, EBL regresses it over the planner decisions that led to

the failure. In next chapter, we will discuss the regression process in detail.



CHAPTER 5

REGRESSION

Consider the case where SNLP found an inconsistency in a partial plan P at anode » (see
Figure 5.1). Further suppose that the parent node of »n, node n’, contains the decision
d resulting in failure and E is the failure explanation. We would like to know what
constraints of the partial plan, P’ at node n’, are necessarily responsible for causing the
failure at node n after taking the decision d. The process of computing the constraints at
noden' that caused the failure after taking the decision d is called the regression.

Node: n’

Resolve a flaw by

decision: d
Node: n
FAIL

Figure5.1: A part of afailure branch to explain the regression process

Formally, regression of a constraint ¢ over a decision d is the set of constraints that
must be present in the partial plan before the decision d, such that the decision d adds ¢
to the partial plan. In state based planners, the decisions correspond closely to applying
operatorsto world states, and thus regression of an explanation over adecisionisvery close

to regression over operators. In contrast, the decisions in partial order planners convert a
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partial plan to another partial plan. We thus need to provide a set of rules for regressing
arbitrary constraints of an explanation over the planner decisions.

Indiscussing regressionrules, itisuseful to distinguish between two typesof constraints:
transitive and non transitiveconstraints. A constraintissaid to betransitiveif the presence
of two constraints c; A ¢y, together imply athird constraint c3, which isnot explicitly stated
in the partial plan. In other words, ¢; A ¢z | ¢3. For example, ordering and binding
constraints in a partial plan are transitive constraints while causal links, are non transitive
constraints. For example, in Figure 5.2, steps sz and s4 are not ordered with respect to
each other. But if a decision orders steps s; and s, it also transitively orders steps sz and
s4. In contrast, adding a causal link or a precondition of a step does not create any further
causal links or preconditions.

Regression of non-transitive constraints are easy to handle [11]. Suppose we want to
regress aconstraint ¢ over adecision d. If cis added by d, then theregression of c over d is

True. Otherwise the regression of ¢ resultsin itself. Thus we have

Regress(c, d)
=True, Iif c€ add(d) (clause (i))

=¢, otherwise (clause (ii))

For atransitive constraint ¢, regression over adecision d hasto consider the case where
the plan before d has constraint ¢’ and d addsthe constraint ¢ such that ¢ and ¢” transitively

entail ¢. Thus we need an additional rule:

Regress(c, d)
=¢ if " € add(d) A (" A <) F e (clause (iii))

It is also possible that there could be multiple different sets of constraints ¢ such that

each set of constraints along with ¢’ could entail ¢. In such cases, regression of a constraint
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Figure 5.2: An example showing transitive constraints
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c over adecision d resultsin digunction of all such sets of constraints ¢. For the example

in Figure 5.2, assumethat s3 precedes s, before ordering. Then theregression of (s3 < s4)

over the ordering decision (s; < s2) resultsin (sz < s4) V [(s3 < 81) A (s2 < s4)].

Regression of an explanation over a decision d is the conjunction of regressing each

constraint of the explanation over thedecisiond. If £ =c; A ca A ... A ¢, then

Regress(€, d) =

Regress(c;, d)A Regress(c,, d) A ... A Regress(c;, d)

The following table explains the regression of various constraints over the demotion

decision.

(iii) Demotion(s1, sz — s3)

Preconditions: (sy <s2) &0
(s2<81)¢ O

32L33E[,

has—ef f ect (s1,p)
Effects: O« O+ (s1 < s2)

| Constraint | Result Reason

precond(p', s') precond(p’, s') clause(ii)

PO PO clause(ii)

has—ef fect (s',p") | has—effect (s',p') clause(ii)

uni fies(p’, p'') uni fres(p’, p’) clause(ii)
(s" < s") True if (s’ = s1) A (s” = s) clause(i)

(s" < s")V clause (ii)

[(s" < s1)A(s2< §")] clause (iii)

Since the demotion decision adds only ordering constraints, regression of all the other

constrains such as open conditions and causal links over a demotion decision results in
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themselves (clause (ii)). Since demotion decision adds (s’ < s”), the regression of
(s’ < s") over the demotion decision is True (clause (i)). Like any ordering decision,
the demotion decision also orders al the steps that precede s; to come before al the
steps that follow s,. As shown in Figure 5.2, say (s’ < s1) and (s, < s”) belong to a
partial plan that is present before taking the above demotion decision. After taking the
demotion decision to order s; to come before s,, s’ is aso ordered to come before s”.
Since [(s' < s1) A(s2 < ") A(s1 < s2) = (s' < $"), theresult of the regression of
the ordering (s’ < s") over the demotion decisionis[(s’ < s1) A (s2 < s")] V (s’ < ).
Regression of constraints over a promotion decision is very similar.

Similarly, if we consider regression of constraints over a step addition, step-
add(s1, precond(p', s2)) which adds a step s; into a partia plan to achieve precond(p’, s»),
the table of regression results are shown below. Like regression of any constraint over
any decision, all the constraints that are not added by the step addition are regressed to
themselves and the constraints that are added by the step addition are regressed to T'rue.

(i) StepAddition(ss, precond(p’, s2))
Precondi ti ons: precond(p’,s2) € G
s s, d L
has—ef f ect (s1,p")

uni fies(p’, p")

Effects: § « s

’

ﬁ’ — 81 L S2
O — (0 < s1) A(s1 < 82)
B’ — unify(p',p")

G' < preconditionsofs, — p



F' «— ef fects(s1)

| Constraint Result Reason
precond(q’, s') True if s' =~ s1, clause (i)
precond(q’, s) otherwise, clause(ii)
has—ef f ect (s, ¢') True if s’ =~ s1, clause (i)
has—ef f ect (s, ¢') otherwise, clause(ii)
PN True if s’ ~ sq, clause(ii)
s' L s otherwise, clause(ii)
(s"<s") True if s’ ~ 51 A s" &~ s5, clause(ii)
(s2 < s") if s’ & s1 A 8" % sy, clause(iii)
(s'<s") otherwise, clause(ii)
(so < s') True if so ~ s1
(s0<$) otherwise, clause(ii)
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Regression rules over simple establishment are very similar to regression rules over

step addition and regression rules over promotion decision are same as regression rules

over the demotion decision.

Onefinal observation regarding the use of regressionin EBL isthat itsusein regression

differsfrom the complete goal regression. As noted earlier, regression of E over adecision

d sometimes results in a digunction of E' vV E" v ...

Since the motivation for using

regression is to find out what part of the parent plan is responsible for generating the

faillure, we use only that part of explanation which is present in the parent partial plan. In

Figure 5.2, the result of regression of (s3 < s4) over the decision to add (s; < s2) iS

(s3 < s4) V[(s3 < s1) A(s2 < s4)]. SNLP+EBL considers (s3 < s4) as the result of

regression because (s3 < s4) is present in the partial plan.



CHAPTER 6

PROPAGATION OF FAILURE EXPLANATIONS

In earlier chapters, we looked at failures encountered by SNLP and initial explanations for
these failures. We also looked at regression of explanations over the planner decisions.
Next we describe is how the regressed explanations are combined and propagated up the

search tree.

Node: m
P'm5m<60>o ’

d \~‘~

Decision: d’

"=~ Degision: d'
Node: n Explanation: E T~

Regress(E1, d1) =E1’ Regress(E2, d1) = E2'

Decision: d1 Decision: d2
Node: n1 Node: n2

U O ’ O o ]

FAIL!! Explanation: E1 FAILI! Explanation: E2

Figure 6.1: An example for propagation

Consider the example shownin Figure 6.1. Since both the children nodes »1 and n2 of
anode n failed, we would like the planner to avoid the decision d to generate noden. To
facilitate this, however, we need to compute the constraints in the partial plan F,, at node
m that are responsible for failure of node . In order to compute the constraints at node m
we regress the explanation of failure at node » over the decision, as explained earlier. To
do this, we first need to compute the explanation of failure at node n. Suppose that »1 and
n2 arefailure nodes with partial plans P,,; and P,,, and failure explanations are £1 and E2
respectively. Suppose further that these nodes are generated from node » to remove aflaw,

say F, by taking decisions d1 and d2 respectively. Assume that these are the only two
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different ways of removing the flaw!. As explained earlier, E1 and E2 are regressed over
d1 and d2 to giveriseto E1' and E2'. Since both of these branches failed to remove the
flaw F', and these are the only two choices, the partial plan P at node » cannot be refined
to a successful partial plan. To compute the explanation E at node n, we note that as long
as the flaw F' exists at node n, the decisions d; and d, will be taken and both these will

lead to failure. Thus the explanation of the failure at noder is:

E(n) =Constraints describing the FlawA

Regress(E1,d1) A Regress(E2,d2) — (z)

In other words, the general propagation rule to compute an explanation of afailure at

node n which has failing children n;..n, corresponding to decisions d(n1), .., d(n,) iS

E(n) =Constraints describing the FlawA
Regress(E(n1),d(n1)) A Regress(E(n2),d(n2)) A ... A Regress(E(ny), d(ny))
E(n) = Constraints describing the FlawA

AVn; A Regress(E(n;),d(n;)) — (2)

Inthe aboverule(z), n1, ny, .. n, areall possible children nodes of noder and d(n;) denotes
the decision that istaken to get to the node n, from its parent node n and E(n;) denotes the
explanation at node »;. The resultant explanation E at node n can now be regressed over
d to compute the constraints under which the decision d will necessarily lead to a failure
from the node m.

Example: Let us consider the search tree described in the Figure 6.2, which shows the
lower part of the failure branch of the example that is described in chapter 3.1.1. When
SNLP failed at node H and I in the Figure 6.2, EBL explains these failures in terms

of ordering inconsistencies as shown in the figure. When we regress the explanation of

refer to refinement search
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Legend:
solid-line : precedence
.. dashed-line : causal-1ink
< : precedence
denot i on ((zma. 1) 1: ROLL(A)
2 . PQLISH(A)
0 : start
.. G: fin
= : codesi gnates
ode E (O(LI ND_A) h P any-cu%di tion
""""" N S : any step
@—>®’—>®—¥@ Expl anat i on: ?x 1 any object
(oo AN ((0<1) (1<2) cylind : cylindrical
(F.CU SH A) precond((COOL A) 2))
has-effect (1 (COOL A))
(CO0L A)

establishment (0 —— 2)
Node G

- -~ Expl anat i on:

O 030 | BT
(PATSH A (o >2)
has-effect(1 (COOL A))

denot i on( (0 ;»Aa/\ﬂm“on(w%a 1)

Node H Node |
Fai |

Expl anation: ((0 < 1) (1 < 0)) Explanal\on ((1 <2) (2 <1))
(initial explanation) (initial explanation)

Figure 6.2: Failure branch of the the example described in Figure 3.2.

node H over the demotion((0 (Goot 4) 2), 1), it results in the ordering constraint (0 < 1).
Similarly when we regress the explanation of node I over the promotion((0 (Cool 4) 2),1),
it results in the ordering constraint (2 < 1). Now, at node GG, we have two explanations

for the failure of the branches H and . According to (z), the explanation at node G is:

E(G)
= Constraints describing the Unsafe link flaw AN(0< DAL= 2)

= (0% % 2) A has—ef fect (1, (Cool A))A QO < 1)A(L< 2)

The above resultant explanation at node G is also showr? in the Figure 6.2. The
explanation at node G can be interpreted as, if there are three steps s;, s, and s3 such that
(s1 < s2)A(s2 < s3) andif an unsafelink of theform ((so Y23 s,), s1), existsin apartial
plan, prune the node from search space, because as long as the unsafe link flaw exist in the

partia plan, the planner will take demotion and promotion which will lead to failure.

2Inthe Figure 6.2, the unsafe link flaw is represented as (0 (Gool 4 2) Ahas—ef f ect (1, (Cool A)).
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6.1 Avoidingoverspecific explanationsin propagation

The propagati on process as described above may sometimes give overspecific explanations.

To see this, consider the example described in Figure 6.3.

o—
(P2, G)

P1 P1
Step-Add(01 ——> G) Step-Add(02 ——> G)

Node: B Node: C

A P
\/ \
O, O—R
(Q2,01)
Q1

Step-Add(03 ——> 01) Step-Add(04 ——> 01)

Node: D Node: E

QL Pl Q1 P1
O—F 20 | | o— a0
~ (Q&‘gl) (P2,G) ~ (Q201) (P2,6)
Fail!! Explanation E1: (Q2, O1) AND Fail!! Explanation E2: (Q2, 01) AND
not-initially-true(Q2) not-initially-true(Q2)

Figure 6.3: An example for dependency directed backtracking

In Figure 6.3, both children of the node B failed to achieve a precondition flaw
precond(Q2,01), since Q2 is not given by either the domain operators or by the initial
state. Based on previous discussion, EBL constructs initial explanations for these failures
as shown in the Figure 6.3. According to the propagation rule described earlier, the

explanation at node B will be:

E(B) =precond(Q1, 01)ARegress(E1, Step-Add(03 & P1))
A Regress(E2, Step-Add(04 & P1))
=precond(Q1, O1) A precond(Q2, OL) A—initiall y—true(Q2)

The explanation above at node B has an additional flaw precond(@1, O1), which is
certainly redundant, since it is clear that the node B will fail as long as the precondition

precond(Q2, 01) existsintheflaw list and Q2 is not given by theinitial state®. Clearly in

3The assumption is that the domain operators do not change from problem to problem. Search control

rules generated by EBL are sound, only if the domain description does not change.
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this case the explanation of failure at node B is same as the explanation at child node D.
To handle this, we change the propagation such that when regression does not change an
explanation of afailure of a node n, the complete explanation of failure at the parent node

of n will be the same as explanation of failure of node ». Specifically,

E(n) =
Regress(E1,d1),If Regress(E1,dl)=E1 — (3
Constraints describing the flawA
Reg(E1,d1) A Reg(E2,d2), Otherwise — (i)

In other words, the general propagation rules to compute an explanation at noden is:

E(Parent(n)) =
Regress(E(n;),d(n;)), I f Regress(E(n;),d(n;)) = E(n;) — (2)
Constraints describing the flawA
Vn; A Regress(E(ns), d(ns)), Otherwise — (1)

In rule (i), notice that we do not conjoin results of regression of explanations of other
siblings of node n;, if the regression does not change the explanation E(n;) over the
decision d(n;). Thisis because E(n;) is an inconsistent constraints set (i.e. P(n;) has no
potential solutions). When the regression of E(n;) is not changed when it is regressed
over the d(n;) implies that E(n;) is present in the partial plan at node ». This means
that the partial plan at node ., P(n), has a set of inconsistent constraints, same as E(n;).
Consequently, P(n) also has no potential solutions. Thus, no refinement of the plan P(n)

will lead to a solution 4.

4Decisionsin a refinement planning add constraints to a plan and do not remove any constraints from it.

Note that flaws are not part of constraints of aplan.
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6.1.1 Dependency directed backtracking

The preceding discussions suggests a methodology for exploiting the explanation and
regression procedures to do dependency directed backtracking. In particular, suppose we
are folding the propagation into the search process. If an explanation of a node n, E(n),
does not change after regressing it over a decision d(n), then the planner can safely prune
al the other siblings of node n. Thus, an explanation E(n) can be taken all the way
up without expanding the outstanding siblings until E(n) changes after regression over a
decision.

In the example described in Figure 6.3, since the explanation of failure at node D
did not change after regression over step-add, planner can prune the other sibling of the
node D i.e. node E, and continue the propagation of explanation above node B with the
Explanation same as the explanation of failure node D.

The actual implementation of SNLP+EBL foldsthe propagation into the search process
to provideadefault dependency directed backtracking. Figure 6.4 showsthefull description

of the propagation algorithm.

6.2 RuleConstruction

In SNLP+EBL, rules are learned during propagation of explanations up the search tree.
Since SNLP+EBL explainsonly failuresin the current implementation, only rejection rules
are learned®. Given a failure explanation E for anode N, arule can be learned to reject

node N asfollows;

IF E
REJECT NODE

5The SNLP+EBL framework can be easily extended to explain successes and learn preference rules
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Procedur e Propagate( E(n;), d(n;))
(d(n;): decision taken get to node n; from its parent node;
P(n;): partid plan at node n;; E(n;): explanation of faillureat n;).
0. Setd « d(n,)
1. ' — Regress((E(n,),d)
2. 1f E' = E, then set d «— d(Parent(n;)); Goto Step 1. (a form of DDB)
3.If E' # E(n;), then
3.1. If there are unexplored siblings of n;
3.1.1 Make argjection rule rejecting the decision d(n;), with E’
as the antecedent generalize it and storeit in the rule set
3.1.2. E(Parent(n;)) « E(Parent(n;)) A E’
3.1.3. Restart search at the first unexplored sibling of node n;
3.2. If there are no unexplored siblings of n;,
3.2.1. Set E(Parent(n;)) < E(Parent(n;)) A E' A
Constraints that describe the flaw that the decision d(n;) is removing
3.2.3. Setn; « Parent(n;), E(n;) = E(Parent(n;))
Set d(n;) < d(Parent(n;)); Goto Step 1.

Figure 6.4: Propagating Failure Explanations

The rule above states that if an explanation £ holds at a node, then that node can be
pruned from the search tree. We can a so construct another rules that reject decisions from
consideration. Suppose the failure explanation E is regressed over a decision d and the

resultant explanation is £’. Then we can learn arule as follows:

IF E'
REJECT d

The rule above states that if £’ holds at a node and if d is a decision choice then the
planner can reject the decision d from the choices.

Now, let us look at the example explained in Figure 3.1.1. and see how rules are
learned. In this example after constructing an initial explanation for node H, arule can be

learned to reject a node, as shown below:

IF (so < s1) A(s1< sg) €O
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REJECT NODE

This rule states that if there exists an ordering cycle in a partial plan of a node, then
reject the node. Since the planner is going to check the inconsistency in the plan, learning
this particular rule will not be very useful in improving the performance. Specifically, the
match cost is not offset by the savings.

At this point, the planner regresses the explanation over the demotion decision to
explain the failure of branch H. After regression, arule can be generated as

IF (so < s1)

REJECT demotion(so (Cool 4) 52, 81)

Therulestates that if (s < s1) € O, then do not take the demotion decision. Similarly,
SNLP+EBL could learn arule at node B to reject a node in search tree if the explanation

at node B holds with the node. In other words:

IF (s0 < s1) A(s1 < G) A
precond((Polish A),G) A
has—ef fect (s1, (Cool A)) A
has—ef f ect (s1, (Polish A)) A
-initially—true(Polish A)

REJECT NODE

This rule says, if there is a step s; which deletes (Cool A) A (Polish A) and it comesin
between two steps sp and G, and G requires a precondition (Polish A), and (Polish A) is
not true in the initial state, then reject the node.

The explanation regressed over the establishment decision at B can be used to learn
a useful step establishment rejection rule at A (since A still has unexplored alternatives).

This rule is shown to the left of node A. It says that Roll should be rejected as a choice
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for establishing any condition at goal step G, if (Polish A) isalso agoa at the same step.
Notice that the rule does not mention the specific establishment (C'ylindrical A), that lead
to the introduction of Roll. Thisis correct because the failure explanation at node B does
not involve (Cylindrical A).5

Therules above arein terms of object A and these are not applicable, if we are solving
the similar problem with another object B. This limitation on rule applicability can be
overcome and in the next chapter we will look at how to generalize these rules such that

these rules are applicable in more situations.

81t is interesting to note that in a similar situation, Prodigy [9] seems to learn a more specific rule which
depends on establishing (Cylindrical A).



CHAPTER 7

GENERALIZATION

Until now, we have seen how SNLP+EBL learns search control rules from the failures
encountered by SNLP. Now, let uslook at the usage of these search control rules and their
role in improving the performance.

Consider the following rule that is generated by SNLP+EBL, which is shown in the
Figure7.1.

Thisrulestatesthat if the object A needstobe Polished anditisnot Polished initialy,
then the planner should not add Roll to achieve (Cylindrical A) at step Goal. If the
planner is given the same problem again, SNLP can use the advice of the above rule and
avoid adding the step Roll to achieve (Cylindrical A), which is guaranteed to fail. Since
the planner isleft only with one other operator, Lathe, it appliesthis operator and succeeds.
Thus, a rule advises the planner not to generate branches that will lead to failures and,
consequently improves the performance.

Now, assume that the planner is given anew problem which involves making an object
B, Cylindrical and Polished. This new problem has same goals as the earlier problem
but it involves a different object B instead of the object A. SNLP cannot take the advice
from the above rule because the above rule states that it is applicable only if we are making

the object A Cylindrical and Polished (and only if these are the top-level goals of the

IF precond((Polish A),Goal) € G A
-initially—true(Polish A)

REJECT stepadd((Roll A) “*"5° ) Goal)

Figure 7.1: Regjectionrule
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plan). However, it is clear that the above rule can advice the planner not to add the operator
Roll to achieve (Cylindrical B), even if we are dealing with object B. To make this
rule applicable in cases where we are dealing with other objects, we need to remove the
specific object names such as A and step names such as Goal from the rule and replace
with variablest, while preserving the soundness of the rule.

For a moment, let us discuss about the soundness of a rule. Whenever the constraints
of arule are applicable in a partial plan, the planner SNLP, takes the advice from the rule
and rejects generating a branch by adding the decision of the rule to the partial plan. In
general, aruleis said to be sound if it does not effect the completeness of the underlying

planner. Soundness can be defined in multiple ways:

e Strong Soundness: there are no solutions under the branch that is rejected by the

planner.

e Minimal Soundness: there are no minimal solutions existing under the branch that
is rejected by the planner (where a solution is minimal if no operator sequence

produced by removing steps from it is a solution).

¢ Solution Soundness: there could be solutions under the branch that is rejected by the

planner, but there exists atleast one other solution in the over all search space.

All the above criterion for soundness of a rule preserve the completeness of the
underlying planner (that is, if there exists asolution for aproblem, the planner is guaranteed
to find it). For example, if the planner takes the advice of the rule in Figure 7.1 and
rejects adding the operator Roll to achieve C'ylindrical, then the rule guarantees that there
exists atleast one solution in other branches of the search tree. But the rules learned by

SNLP+EBL are sound according to criterion (z), which guarantee that there are no solutions

Lan object variable matches with any object of the domain and a step variable with any step of a partial

plan as long as all the other constraints of arule hold in the partia plan.
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Figure 7.2: An example to explain generalization process in SNLP+EBL

under the rejected branch. In this chapter, we will describe how to generalize the rules that
are learned by SNLP+EBL such that the rules are applicable in more than one problem
while preserving the soundness of the rule.

We start by noting that generalization involves replacing specific step-names such as
Goal and object-names such as A with variables, without losing the soundness of arule.
For ageneralized rule to be sound (i.e. taking its advice will not affect the completeness of
the underlying planner), all of the instances of the generalized rule must be sound. Ideally,
wewould liketo remove all the step-names and obj ect-names from arule and replace these
names with variables. But this may not preserve the soundness of the rule, since some
names may have to be present in the rule for the failure to occur. We will show later a
situation where replacing al the names of a rule with variables will lead to the loss of the
soundness of the rule.

Traditionally, the generalization in EBL is done by starting with a variablized explana-

tion and variablized decisions and redoing the compl ete regression process, specializing the
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explanation along the way [8]. In SNLP+EBL, we use single pass generalization scheme,
where we begin by variablizing the initial explanation that is constructed by SNLP+EBL.
Consider the example described in Figure 7.2, wherethe goals required are P1 and P2 and
initially only P1 is true. The planner removes the flaw precond(P1, G) and establishes
(0] it G) from the initial state (denoted by 0, in the figure). It then adds the new operator?
01 to remove the flaw precond(P2, G). But the operator O1 deletes P1, which threatens
the establishment from initial state. Planner tries to order O1 to come before the initial
state by demotion and orders O1 to come after G' by promotion. Both these branches fail
because of ordering inconsistencies. The initial explanation constructed by the planner for

demotion failureis
E=0< 51:0)A(s1< 0

Immediately, after constructing the above initial explanation, SNLP+EBL variablizes
by replacing names with variables where O in the explanation is replaced with ?sg, Ol is

replaced with ?s; and to remember the bindings, these are kept in alist of bindings.

E=(?s0 < ?s1) A (?s1 < ?s0) A

<(?So — O), (?31 — Ol)>

After variablizing the initial explanation, and keeping the bindings in a separate list,
it regresses the explanation over variablized decisions (for example, demotion(?sg it
?s4, ?s1) With ((?sg — 0), (?s, — G), (?s1 — O1)) corresponds to the variablized version
of demotion(0 s G, 01)) 3. Asexplained earlier, SNLP+EBL conjoins explanations from
various branches of anode and propagates the explanation up the search tree. At any point,

SNLP+EBL generates arule as explained earlier, but removes the bindings between names

2steps are instances of operators
3Note that the predicates of a causal link are not variablized. Since the predicates will be again introduced

into explanations during regression, variablizing the predicates will not help much in generalization
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and variable, thus leaving the variables in the rule. Since an object variable could be
matched with any object of the domain, the rule can be applied in more than one problem,
if the other constraints of the rule are met by the partial plan.

If a failure occurrs because of a specific object or a step in the partial plan, then
removing all the bindings between names and variables will lead to unsound rules. If a
specific object name or a step is required, then the regression of a binding over a planner
decision will result in T'rue and replacing all the instances of the variable with the namein
the explanation.

To automate this process, we just need to formalize the regression of bindings between
names and variables over the planner decisions. Consider a step-name binding ((?so — 0))
over various decisions. As noted earlier, regression of a constraint ¢ over a decision
d regresses to itself, if d did not add the constraint ¢. During planning, whenever the
planner, SNLP, introduces a new step s; into a partial plan, s; is replaced with ?s; and
this replacement is noted down by adding a step-binding (?s; — s1) into the partial plan.
Step addition is the only one decision that introduces the bindings between step names and

variables. Therefore, from earlier discussion of regression in Chapter 5

Regress((?s1 — s1), stepadd(s1, precond(p’, s2)))
=True
Regress((?s — s), stepadd(s1, (p', s2)))

=((?s —> s))

where step addition decision is given by StepAdd(sy, precond(p’, s2))
Precondi tions: precond(p’,s;) € G
s s, d L
has—ef f ect (s1,p")

uni fies(p’, p")
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Effects: S« s;
L — 81 LR 8o
O «— (0 < s1)A(s1< 82)
B — unify(p,p")
G' « precond(sy) — p'
F' — ef fects(sq)

But from the above definition, it isclear that stepadd ordersthe newly added step s; to
come after initial step 0 and adds (0 < s1) into the partia plan. When it orders, it al'so adds
astep-binding (?so — 0) into the partial planin order to treat all the stepsin a partial plan
as variables and these step-bindings are noted down in the list of step-bindings. When it
regresses (?so — 0) over the stepadd, it resultsin True, since it is added by the decision.
Since, this binding requires only the initial state to be constant, when we regress, al the
instances of ?sq in the explanation are replaced with O (or 7, a short hand notation of initial
state).

The general ideabehind the above regression process of bindingsover various decisions
is that the binding resultsin itself, if the decision does not add that binding. It resultsin a
specific constant if that specific step name is required by a decision.

Let us consider the example described in Figure 7.2 to explain the above regression
process. Initial explanations at leaf nodes are generalized by replacing step-names
with variables and regressed over the variablized demotion and promotion decisions

respectively. The resultant explanation at node C' is (see Figure 7.2):

E(C)
= Constraints of Flaw N\ Regress(E1, demotion) A Regress(E2, promotion)
= (250 3 s,) A has—ef f ect (2s1, P1)A

(?s0 < ?s1)A
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(P51 < ?s4)A

((?s0 — 0),(?s1 — 01),(?s, — G))

When the above explanation is regressed over stepadd(s1, precond(P2, s,)), it results

in the following explanation.

Regress(E(C), stepadd)
= (I 5%,) N ((P2,%55)) A (254 — G))

In the above explanation, ?s, is replaced with I, because when we regressed (?sp — 0)
results in True and replaces al the instances of ?sy in the explanation with 7. If astep is
specified by anameinstead of variable, the step can be matched with the particular instance
of the step and not any other step in the partial plan. In our example, I in the explanation
matches with only theinitial step and not with any other step in the plan. Thus, if aspecific
step name s required, regression process i ntroduces that name into the explanation.

Let us look at the generalization of object-names. If an initial explanation requires an
object to be a specified by a name, it cannot be generalized. For example, consider the

following initial explanation®.
0°™4P @) A (Clear(B),1) A (0= 1),(1 < G) A (B % Table)

This explanation states that if we need C'lear(B) at astep 1 where B isnot aT able and
if the step 1 comes in between steps 0 and G, and (0 On4B) G) exists in the partia plan,
it will fail. The variablized version of the above explanation does not replace the T'able
with avariable, since the failure occurred because of B not being a T'able. Therefore, the

variablized version of the above explanationis:

(?So On(?i%’?B)?Sg) A\

4we will show that when SNLP+EBL learns from depth-limit failures, it starts with these kind of initial

explanations.
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(Clear(?B), ?s1) A

(?s0 < ?s1),(?s1 < ?sg) A

(?B # Table) A

{(?s0 — 0), (51 — 1), (s, — G)(?4 — A),(?B — B))

Whenever SNLP+EBL generates a rule from a generalized explanation, it removes
only the codesignation bindings between the names and variables. It does not remove
any non-codesignation bindings since these bindings are produced by the decisions or
initial explanations as explained above®. By using the above explanation, if SNLP+EBL
generates arule, it will be as follows, which has no codesignation bindings between names

and variables.

IF (0 24

2sg) A
(Clear(?B), ?s1) A

(?s0 < ?s1),(?s1 < ?sg) A
(?B % Table) A

REJECT NODE

7.1 RuleStorage

Once arule is generalized, it is entered into the corpus of control rules available to the
planner. These rules thus become available to the planner in guiding its search in the
other branches during the learning phase, as well as subsequent planning episodes. In
storing rules in the rule corpus, SNLP+EBL makes some bounded checks to see if an
isomorphic ruleis already present in the stored rules. In this thesis, we ignored issues such

as monitoring the utility of learned rules, and filtering bad rules. Part of the reason for this

SFrom our generalization method, it should be clear that if two variables are not denoted by same symbol,

then these two variables are two different steps or objects.
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was our belief that utility monitoring models developed for state-space planners [4, 10]

would also apply for plan-space planners.



CHAPTER 8

LEARNING FROM DEPTH LIMIT FAILURES

In earlier chapters, we described the framework for learning search control rules from
faillures that are recognized by SNLP. As mentioned in Chapter 4, the only failures
explained by standard SNLP+EBL are the ordering and binding inconsistencies, which it
detects during threat resolution (the unestablishable condition failure is rare in practical
domains). The rules learned from such failures were successful in improving performance
of SNLP in some synthetic domains (such as D™ S%* described in [1]).

Unfortunately however, learning from analytical failures alone turned out to be
infeasible in many domains. The reason is that the planner crosses a pre-set* depth limit

before it encounters a failure or a success as shown in the following Figure 8.1.

A

Fail p\Fa”

u u Depth Limit

Figure 8.1: A search tree showing depth limit failures

The main reason for this turns out to be that, in many cases, SNLP goes into an
unpromising branch and continues adding locally useful, but globally useless constraints
(steps, orderings, bindings) to the plan, without making any progress towards sol ution.

An example here might help to see why SNLP gets into infinite loops. In Figure
8.2, SNLP achieves On(A4, B) at G by establishing it from initial state. Then it tries to

Ldepth limit is set to avoid searching for infinitely long plans
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achieve On(B, C) a G by introducing a new step S1 (which corresponds to an operator
Puton(B, ()), and ordering S1 to come in between initial state SO and goal state G. But
the newly added step S1 requires Clear(B) as one of its preconditions. Since there are
no ordering or binding inconsistencies in the partia plan, SNLP without realizing any
inconsistencies in the partial plan, it triesto achieve al the preconditions of al stepsin the
partial plan. But beforeit attemptsto achieve Clear(B), it could possibly cross depth limit.
In this chapter, we will describe how SNLP+EBL explainsimplicit failures at depth limits

and learn from these failures.

A
5
C
Initial State
Goal State
. On(A, B)
Establishment(SO —= G)
On(A.B)
on(B, C

on(B, C)
Step-Add(PUTON(B, C) ————= G)

On(A, B)

Crosses Depth Limit

Figure 8.2: An example showing a branch of a search tree that may possibly cross depth
limit

Ingeneral, if abranch of anode crosses adepth limit, the partial plan at the depth limitis
non-optimal and extending such plans to generate a complete plan may not be desired, and

such plans can be pruned from consideration. But when a branch crosses a depth limit, no
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analytical explanation can be given, since the partial plan at depth limit is not inconsi stent
according to planner’s consistency checks. As noted in Chapter 6, an explanation at an
intermediate node in a search tree is the conjoined explanation of all the possible children
explanations and the constraints describing the flaw. If we do not explain the reason for
pruning the partial plan at depth limit, then we cannot construct an explanation for a node
which has some branches that failed analytically, and a branch that crossed a depth limit.
Since most of the branches of a problem cross depth limits in recursive domains, it limits
EBL’s ability to learn effective search control rules.

Since depth-limit failures are not analytical, no domain-independent explanation can
be given to these failures. However, sometimes it is possible to use strong consistency
checks based on the domain-theory as well as the meta-theory of the planner to show that
the partial plan at the depth-limit contains a failure that the planner’s consistency checks
have not yet detected. Consider the previous example, the partial plan at node C is shown

below:

(STARTY—~(1. PUTON(B c

(CLEAR B)

(ONB Q

Given the blocks world domain axiom that no block can have another block on top of it,
and be clear at the same time, and the SNL P meta-theory that a causal-link, s; = s, once
established, will protect the condition ¢ in every situation between s; and s,, we can see
that the above partial plan can never be refined into a successful plan. To generalize and
state this formally, we define the np—conditions, or necessarily persistent conditions, of a
step s’ in a plan P to be the set of conditions supported by any causal link, such that s’

necessarily intercedes the source and destination of the causal link.
np—conditions(s’) = {c|s1 > s2 € LA s1 <5 A5 < 55}

Given the np—conditions of a step, we know that the partial plan containing it can never
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be refined into a complete plan as long as precond(s’) U np—conditions(s’) is inconsistent
with respect to domain axioms.? However, SNLP's local consistency checks will not
recognize this, leading it sometimes into an indefinite looping behavior of repeatedly
refining the plan in the hopes of making it complete. In the example above, this could
happen if SNLPtriesto achieve Clear(B) at step 1 by adding anew step s3 : Puton(z,y),
and then plans on making On(z, B) true at s3 by taking A off of B, and putting z on B.
When such looping makes SNLP cross depth-limit, SNLP+EBL uses the np—conditions
based consistency check, to detect and explain this implicit failure, and learn from that
explanation.

To keep the consistency check tractable, SNLP+EBL utilizesarestricted representation
for domain axioms(first proposedin[3]): each domain axiomisrepresented asaconjunction
of literals, with a set of binding constraints. The table below lists a set of domain axioms
for the blocks world. The first one states that y cannot have z on top of it, and be clear,

unless y isthetable.

On(z,y) N clear(y)[y % Table]

On(z,y) A On(z, 2)[y # 2]
On(z,y) A On(z,y)[z # 2,y # Table]

A partia plan is inconsistent whenever it contains a step s such that the conjunction
of literals comprising any domain-axiom are unifiable with a subset of conditions in
np—conditions(s) U precond(s). Given this theory, we can now explain and learn from the
blocks-world partial plan above. The initial explanation of this failureis: st art NEY)
GA(start <1)A (1 <G Aprecond(C ear (y),1) Ay % Tabl e. This explanation
can be regressed over the planning decisions to generate rules.

Thetype of analysis described above can be used to learn from some of the depth-limit

2In fact the plan will also fail if effects(s’) U np—conditions(s’) is inconsistent. However, given any
action representation which makes STRIPS assumption, these inconsistencies will any way be automatically

detected by the normal threat detection and resol ution mechanisms.
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(1) Reject establishment st art °"%¥ s,

If pr econd(On(y, 2), s1)A
-initially—true(On(y,2))A —bi nds(y, Table)
(2) Regject promotion s; < s3
If pr econd(clear(zy), s3)A
est abl i shes(sy, On(z1, z2), s2)A

pr ecedes(ss, s2) A =bi nds(z,, T'able)

(3) Reject step addition puton(z’, y) <3 s,

If est abl i shes(start,On(z,y), s2)A
pr ecedes(sy, s2)A —bi nds(y, T'able)A

Figure 8.3: A sampling of rules learned using domain-axiomsin Blocks world domain

failures® In the blocks world, use of this technique enabled SNLP+EBL to produce several

useful search control rules. Figure 8.3 lists a sampling of these rules. The first oneis an

establishment rejection rulewhich saysthat if On(z,y) A On(y, 2) isrequired at some step,

then regject the choice of establishing On(z,y) from the initial state, if initial state is not

giving On(y, 2).

3When the analysisunearths multiplefailure explanationsfor adepth-limit plan, we prefer the explanations

containing steps introduced at shallower depths (in our case, smaller step numbers). This tends to help the

dependency direct backtracking component during the learning phase



CHAPTER 9

EXPERIMENTS

Until now, we have described the learning framework in SNLP+EBL and showed how
these rules could improve the performance of the system. Providing search control rulesto
aplanner aloneis not sufficient. Planner needs to match every rule from the rule storage at
every decision point. The cost to match rules could offset the benefits provided by therules.
In this chapter, we present the results of two sets of experiments conducted to evaluate the
effectiveness of the rules learned by the system. The objective of the experiments was to
show that the rules learned by SNLP+EBL improve the performance of the planner over
the baselevel planner.

First, we have conducted experiments on random blocks world problems without any
constraints on the problem characteristics. In these problems, the planner did not do much
of search as these problems turned out to be very easy to solve. For this reason, we
have conducted two sets of experiments in blocks world domain. In the first set of the
experiments the planner was given random initia states and goal states with 3-block (e.g
(On A B) (On b C)) stacks. In the second set of the experiments the planner was given
random problemswith a constraint on the minimum size of the problem.

Setup: Initial states and goal states of the problemsin each test case are generated using the
procedure defined in [8]. This procedure takes two parametersMAX-BLOCK S and MAX-
GOALS. First, the number of blocks, from 3 to MAX-BLOCKS is generated randomly.
To generate the initial state, the following sub-procedure is used, For each block, with
probability 1/3 put it on the table, otherwise randomly select a previously generated stack,
and place the block on top. To create goal states, the same subprocedure used to generate

the initial state is used. Then a set of goals is selected as follows. Each of assertions in
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the goal state is filtered with probability 2/3 if it istruein the initial state. Then arandom
number, from 1 to MAX-GOALS, of these assertions are conjoined to form goal state. If
all the goas are already in theinitial state the procedureis repeated.

For each test set, the planner was run on a set of randomly generated problemsto learn
search control rules. During the testing phase, the two test sets of problems were run
with SNLP, SNLP+EBL (with the saved rules). To evaluate the relative effect of EBL vs
domain-axiom based check, we also have run adifferent version of SNLP, SNLP+Domax,
which uses domain axioms based consistency checks. Specifically, SNLP+Domax uses
domain axioms based consistency checks to see a partial plan is inconsistent with the
domain theory. If it finds inconsistency in the partial plan, it prunes the branch as soon
asitis generated. Applying such strong consistency checks at every decision point while
planning increases the cost of generating a node. Thus, we predicted that the use of domain
axioms based consistency checks increases the cost of the planning unduly and does not
perform better than SNLP+EBL, which uses domain axioms to generate search control
rules at the depth limitsto explain failures.

A cpu time limit of 120 seconds was used in each test set. If the planner takes more
than 120 seconds to solve a problem, the planner aborts the search and returns as failed.
We chose to compare the cpu time limits so that it takes the matching cost of the rulest into
account while providing the performance improvements by the search control rules.

Test Set |: This set consists of 30 problems that had randomly generated initial states
consisting of 3 to 8 blocks and the goa states consisting of only one 3-block stack.
SNLP+EBL was run on 20 random problemsto learn search control rulesfrom the failures
encountered by the planner. SNLP+EBL learned 10 search control rules from these 20

problems and these rules are used during the testing phase.

Imatching cost of aruleisthe cost that istaken by the planner to match arule against the partial plan at a

decision point
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Test Set11: This set consists of 100 problems had randomly generated initial states
consisting of 3 to 8 blocks and random goa states. SNLP+EBL was run on 50 random
problems to learn search control rules from the failures encountered by the planner.
SNLP+EBL learned 15 search control rules from these 50 problems and these rules are
used during the testing phase.

In both of these test sets, aruleis added into the rule storage, if it is used atleast once
whilelearning the rules. Since very few number of ruleslearned in each test set, we did not
do any sophisticated utility analysis like average matching cost into consideration to add a
ruleinto the rule storage.

Results: Table 9.1 describes the results of these experiments. Figure 9.1 shows
the cumulative performance graphs for the three methods in the second test set. Our
results clearly show that SNLP+EBL was able to outperform SNLP in terms of cpu time
significantly on these problem populations. The results about SNLP+Domax also show
that learning search-control rulesis better than using domain-axioms directly as abasis for
stronger consistency check on every node generated during planning. Thisis not surprising
since checking consistency of every plan during search can increase the refinement cost
unduly. EBL thus provides a way of strategically applying stronger consistency checks.
Finally, the fact that SNLP+EBL fails to solve 19% of the test problems in the second
set shows that there may be other avenues for learning search control rules. We intend to

explore these in our future work (see chapter 10).



Test Set SNLP SNLP+EBL SNLP+Domax

% Solv | C.time || % Solv | C.time || % Solv | C. time

| (30prob) || 60% | 1767 | 100% | 195 | 97% | 582

Il (100 prob) | 51% | 6063 || 81% | 2503 | 74% | 4623

Table 9.1: Results from the blocks world experiments

Cumulative performance curves in Test Set 2
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CHAPTER 10

CONCLUSIONSAND FUTURE WORK

In this thesis, we presented SNLP+EBL, the first systematic implementation of EBL
search-control learning in a partial-order planner. We have described the details of the
initial explanation construction, regression and explanation propagation, and rule learning
process in SNLP+EBL. We have then proposed a general methodology for learning from
planning failures, viz., using a battery of stronger consistency checks based on the meta-
theory of the planner, and the domain theory of the problem, to detect and explain failures
at depth limits. We described a specific instantiation of this method, which uses domain
axioms to look for inconsistencies in the plans at depth limits, and presented experimental
results showing that the search control rules that SNLP+EBL learns using this technique
enableit to outperform SNLP.

The current work shows that EBL provides a way of strategically applying domain-
axiom-based consistency checks. Finally, inthisthesis, | ignored issues such as monitoring
the utility of learned rules, and filtering bad rules. Part of the reason for thiswas our belief
that utility monitoring models developed for state-space planners [4, 10] will also apply
for plan-space planners. In our future work, better utility models can be incorporated into
SNLP+EBL.

L earning from domain-axiom failures alone may not be sufficient in domains which do
not have any strong implicit domain theory. In future, identifying other types of stronger
consistency checks which can be used to complement the domain-axiom techniques in
such domains and learn search control rules will be an interesting area to explore. These
include using the full finite-domain variable consistency checks to learn to avoid certain

types of variable-based looping, utilizing domain-specific theories of loop detection to
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avoid step-based looping, as well as using strong causal link consistency checks as a way
of learning about conflict deferment [12]. Applying the EBL methodolgy that is used in
SNLP+EBL for a planner with better representation of actions and allows universal and
existential conditions such as UCPOP will be interesting. Currently, my colleague Y ong

Qu is conducting experiments on the effectiveness of EBL on UCPOP.



APPENDIX A

| ssues Regar ding Soundness of SNL P+EBL s Sear ch Control Rules
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As explained in chapter 7, aruleissaid to be sound if it does not affect the completeness

of the underlying planner. It can be defined in different ways as follows:

e Strong Soundness: there are no solutions under the branch that is rejected by the

planner.

¢ Minimal Soundness: there are no minimal solutions existing under the branch that
is rejected by the planner (where a solution is minimal if no operator sequence

produced by removing steps from it is a solution).

¢ Solution Soundness: there could be solutions under the branch that is rejected by the

planner, but there exists atleast one other solution in the over all search space.

All theabove criteriafor soundness of arule preservethe completeness of the underlying
planner (that is, if a problem is solvable, the planner is guaranteed to solve it). In chapter
7, we argued that the rules learned by SNLP+EBL preserve strong soundness.

In order to preserve the strong soundness, arule should guaranteethat it isnot removing
any solution from the search space. When the planner fails during the search, it invokes
the learner to learn a search control rule. Learner constructs an initial explanation for the
fallure as explained in 4.1. Theinitia explanation for any failureis a set of inconsistent
constraints. Since a plan with inconsistent constraints cannot be refined to a successful
plan, rules that are constructed from theinitial explanations are sound.

A rulethat islearned from an explanation at an intermediate node of the search treeis
sound only if the explanation of the node accountsfor all the failures of the branches under
that node. For this, an explanation at any intermediate node should be the conjunction of
the failure explanations emerging from all the branches under that node. To construct a
sound explanation at any intermediate node, the planner should thus explore al branches

of that node and explain the failures for all those branches. However, the planner may not
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generate some branches under a node because of existing constraints in the partial plan of
the node. For example, suppose s; and s, are two steps in a partial plan and s; < s, and
s2 has an effect p, and s; needs the condition p. The planner will not generate a simple
establishment branch to achieve p at s; from the step s,. If we learn arule here, we want
to know whether that the rule would be applicable in another situation where s; 4 so.
The issue thus becomes one of ensuring that all possible and potential search branches are
properly accounted for in generating a failure explanation. In following paragraphs, we
explain how thisis done.

While planning, at any node the planner, SNLP, resolves a conflict or achieves an open
condition at a step. For resolving a conflict, the planner has only two choices to order the
threat by promotion or by demotion. To resolve a conflict, we modified SNLP such that it
always generates two branches to account for promotion and demotion irrespective of the
constraints in the partial plan.

For achieving an open condition at a step, the planner has two choices to achieve the
open condition by step addition or by simple establishment. Since the number of operators
available in the domain are fixed, the number of branches that are generated by the step
addition are fixed irrespective of the constraints in the partial plan. However, the number
of simple estbalishment branches under a node are not fixed since the number of stepsin a
partial plan that can give an open condition depends on the constraints in the partial plan.
Simple establishments can be seperated into two categories, establishments from initial
state and establishments from steps other than initial state. We will treat these two cases
differently.

Simple establishmentsfrom initial state: Since initial state changes from problem to

problem, the number of simple establishment branches from initial state may vary too. For
example, suppose we are trying to achieve a condition p at a step s and we fail. Suppose

further that in the current partial plan, p isnot truein theinitial state. It is possible that had
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initial state gave p, the failure would have been avoided. To handle this, we can do one of

two following things:

e Qualify the Explanation: Qualify the falure explanation with a constraint,

-initiall y—true(p).

e Counterfactual Reasoning: The approach of qualifying explanations may lead us
sometimes to over specific explanations. For example, it may be that the simple
estblishment from initial state to achieve p at s would have failed even if p were true
in the initial state. In such cases, we can get more general but sound explanations
by doing counterfactual reasoning i.e. assume p is given by initial state and check
the simple establishment from initial state till fail. If it fails, the qualification is not

necessary.

Since counterfactual reasoning can be expensive, we use thefirst approach of qualifying
the explanation in our implementation.

The approach of qualifying the explanation will not work well in cases wherethe failed
condition is non propositional. For example, suppose we were trying to achieve P(z) at a
step s. Suppose that initial state currently has P(A) and we fail to achieve P(z) at s under
these conditions. Now, we need to qualify that the initial state gives only P(A) and not
P(B), P(C) etc,. In other words, the qualification is
z& A= -initially-true(P(z))

Whilethisispossibleto do, the resulting explanations can be too specific and al so expensive
to match.

In our current implementation, we simply avoid learning from any failure branches
corresponding to uninstantiated goals. Fortunately, efficient planning anyway demands
that the planner prefer working on maximally instantiated open conditions. Therefore, this

restriction does not affect the efficiency of thelearner. Now, we have completed explaining
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about simple establishments from the initial state. The final issue is simple establishments
from steps other than the initial state.

Simple establishmentsfrom stepsin the partial plan: In order to generate a sound ex-

planation at a node, simple establishment branches pose a problem since the number of
simple establishment possibilities change from problem to problem. In SNLP+EBL, we
currently consider only those explanations that account for failures of establishments that
are generated by the planner.

It may look asif we need to consider explanations of all possible establishment failures
and conjoin these explanations along with other explanations of the node. All possible
establishmentsinclude the establishments that are actually generated by the planner as well
as establishments that could have been possible, if certain ordering constraints or binding
constraints are not present in the partial plan. This is not required because even though
certain simple establishments are not generated by the planner because of the constraints
in the partial plan, planner considers al the step-addition possibilities involving the same
operators. If it fails to establish an open condition from a step because of ordering or
binding constraints, it must be because it can not do so evenif it were allowed to have fresh
copies of al the operators. Thus, learner need not conjoin the explanations of the branches

that did not give the condition because of ordering or binding constraintsin the partial plan.
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