
AI-MIX: Using Automated Planning to Steer Human Workers Towards Better
Crowdsourced Plans

Lydia Manikonda Tathagata Chakraborti Sushovan De
Kartik Talamadupula Subbarao Kambhampati

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287 USA

{lmanikon, tchakra2, sushovan, krt, rao} @ asu.edu

Abstract
One subclass of human computation applications are those
directed at tasks that involve planning (e.g. tour planning)
and scheduling (e.g. conference scheduling). Interestingly,
work on these systems shows that even primitive forms of
automated oversight on the human contributors helps in sig-
nificantly improving the effectiveness of the humans/crowd.
In this paper, we argue that the automated oversight used in
these systems can be viewed as a primitive automated plan-
ner, and that there are several opportunities for more sophis-
ticated automated planning in effectively steering the crowd.
Straightforward adaptation of current planning technology is
however hampered by the mismatch between the capabili-
ties of human workers and automated planners. We identify
and partially address two important challenges that need to
be overcome before such adaptation of planning technology
can occur: (i) interpreting inputs of the human workers (and
the requester) and (ii) steering or critiquing plans produced
by the human workers, armed only with incomplete domain
and preference models. To these ends, we describe the im-
plementation of AI-MIX, a tour plan generation system that
uses automated checks and alerts to improve the quality of
plans created by human workers; and present a preliminary
evaluation of the effectiveness of steering provided by auto-
mated planning.

1 Introduction
In solving computationally hard problems – especially those
that require input from humans, or for which the complete
model is not known – human computation has emerged
as a powerful and inexpensive approach. One such core
class of problems is planning. Several recent efforts have
started looking at crowd-sourced planning tasks (Law and
Zhang 2011; Zhang et al. 2012; 2013; Lasecki et al. 2012;
Lotosh, Milo, and Novgorodov 2013). Just like in a formal
organization, the quality of the resulting plan depends on
effective leadership. We observe that in most of these exist-
ing systems, the workers are steered by primitive automated
components that merely enforce checks and ensure satisfac-
tion of simple constraints. Encouragingly, experiments show
that even such primitive automation improves plan quality,
for little to no investment in terms of cost and time.

This begs the obvious question: is it possible to improve
the effectiveness of crowdsourced planning even further by

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using more sophisticated automated planning technologies?
It is reasonable to expect that a more sophisticated auto-
mated planner can do a much better job of steering the crowd
(much as human managers “steer” their employees). Indeed,
work such as (Law and Zhang 2011) and (Zhang et al. 2012)
is replete with hopeful references to the automated planning
literature. There exists a vibrant body of literature on au-
tomated plan generation, and automated planners have long
tolerated humans in their decision cycle – be it mixed ini-
tiative planning (Ferguson, Allen, and Miller 1996) or plan-
ning for teaming (Talamadupula et al. 2010). The context of
crowdsourced planning scenarios, however, introduces a re-
versed mixed initiative planning problem – the planner must
act as a guide to the humans, who are doing the actual plan-
ning. The humans in question can be either experts who
have a stake in the plan that is eventually created, or crowd
workers demonstrating collective intelligence.

In this paper, we present AI-MIX (Automated Improve-
ment of Mixed Initiative eXperiences), a new system that
implements a general architecture for human computation
systems aimed at planning and scheduling tasks. AI-MIX
foregrounds the types of roles an automated planner can play
in such systems, and the challenges involved in facilitating
those roles. The most critical challenges include:

Interpretation: Understanding the requester’s goals as
well as the crowd’s plans from semi-structured or unstruc-
tured natural language input.

Steering with Incompleteness: Guiding the collaborative
plan generation process with the use of incomplete mod-
els of the scenario dynamics and preferences.

The interpretation challenge arises because human workers
find it most convenient to exchange / refine plans expressed
in a representation as close to natural language as possible,
while automated planners typically operate on more struc-
tured plans and actions. The challenges in steering are mo-
tivated by the fact that an automated planner operating in a
crowdsourced planning scenario cannot be expected to have
a complete model of the domain and the preferences; if it
does, then there is little need or justification for using human
workers! Both these challenges are further complicated by
the fact that the (implicit) models used by the human work-
ers and the automated planner are very likely to differ in
many ways, making it challenging for the planner to critique
the plans being developed by the human workers.



Figure 1: A generalized architecture for crowdsourced plan-
ning systems.

In the rest of the paper we describe how these challenges
are handled in AI-MIX, and present an evaluation of their ef-
fectiveness in steering the crowd. The paper is organized as
follows. We first look at the problem of planning for crowd-
sourced planning in more detail, and present a generalized
architecture for this task. Next, we consider the roles that an
automated planner can play within such an architecture, and
discuss the challenges that need to be tackled in order to fa-
cilitate those roles. We then describe AI-MIX and present
a preliminary evaluation of the effectiveness of the steering
provided by automated planning on Amazon’s MTurk plat-
form1. We hope that this work will spur more directed re-
search on the challenges that we have identified.

2 Planning for Crowdsourced Planning
The crowdsourced planning problem involves constructing a
plan from a set of activities suggested by the crowd (hence-
forth referred to as the turkers) as a solution to a task, usu-
ally specified by a user called the requester. The requester
provides a high-level description of the task – most often in
natural language – which is then forwarded to the turkers.
The turkers can perform various roles, including breaking
down the high-level task description into more formal and
achievable sub-goals (Law and Zhang 2011), or adding ac-
tions into the plan that support those sub-goals (Zhang et
al. 2012). The term planner is used to refer to the automated
component of the system, and it performs various tasks rang-
ing from constraint checking, to optimization and schedul-
ing, and plan recognition. The entire planning process must
itself be iterative, proceeding in several rounds which serve
to refine the goals, preferences and constraints further until a
satisfactory plan is found. A general architecture for solving
this crowdsourced planning problem is depicted in Figure 1.

2.1 Roles of the planner
The planning module, or the automated component of the
system, can provide varying levels of support. It accepts

1Amazon Mechanical Turk, http://www.mturk.com

both the sub-goals SG, and crowd’s plan PC , as input from
the turkers. This module analyzes the current plan generated
by the crowd, as well as the sub-goals, and determines con-
straint and precondition violations according to the model
MP of the task that it has. The planner’s job is to steer the
crowd towards more effective plan generation.

However, the three main actors – turkers, requester, and
planner – need a common space in which to interact and
exchange information. This is achieved through a common
interactive space – the Distributed Blackboard (DBb) – as
shown in Figure 1. The DBb acts as a collaborative space
where information related to the task as well as the plan that
is currently being generated is stored, and exchanged be-
tween the various system components.

In contrast to the turkers, the planner cannot hope for very
complex, task-specific models, mostly due to the difficulty
of creating such models. Instead, a planner’s strong-suit is to
automate and speed-up the checking of plans against what-
ever knowledge it does have. With regard to this, the plan-
ner’s model MP can be considered shallow with respect to
preferences, but may range the spectrum from shallow to
deep where domain physics and constraints are concerned
(Zhuo, Kambhampati, and Nguyen 2012). The planning
process itself continues until one of the following conditions
(or a combination thereof) is satisfied:
• The crowd plan PC reaches some satisfactory threshold

and the requester’s original goal G is fulfilled by it; this
is a subjective measure and is usually determined with the
intervention of the requester.

• There are no more outstanding alerts, and all the sub-goals
in SG are supported by one (or more) actions in PC .

3 Planning Challenges
From the architecture described in Figure 1, it is fairly ob-
vious that a planner (automated system) would interact with
the rest of the system to perform one of two tasks: (1) inter-
pretation and (2) steering.

Interpretation is required for the planner to inform itself
about what the crowd is doing; steering is required for the
planner to tell the crowd what they should be doing.

3.1 Interpretation of the Crowd’s Evolving Plan
The planner must interpret the information that comes from
the requester, and from the crowd, in order to act on that
information. There are two ways in which the planner can
ensure that it is able to understand that information:

Force Structure The system can enforce a pre-determined
structure on the input from both the requester, and the crowd.
This can by itself be seen as part of the model MP , since
the planner has a clear idea about what kind of information
can be expected through what channels. The obvious dis-
advantage is that this reduces flexibility for the turkers. In
the tour planning scenario (our main application domain that
we explain in Section. 4), for example, we might force the
requester to number his/her goals, and force the turkers to
explicitly state which goals their proposed plan aims to han-
dle (c.f. (Zhang et al. 2012)). The turkers could also be
required to add other structured attributes to their plans such
as the duration and cost of various activities (actions).



Extract Structure The planner can also extract structure
from the turker inputs to look for specific action descrip-
tions that are part of the planner’s model MP , in order to
understand what aims a specific plan is looking to achieve.
Although this problem has connections to plan recogni-
tion (Ramı́rez and Geffner 2010), it is significantly harder
as it needs to recognize plans not from actions, but rather
textual descriptions. Thus it can involve first recognizing
actions and their ordering from text, and then recognizing
plans in terms of those actions. Unlike traditional plan
recognition that starts from observed plan traces in terms of
actions or actions and states, the interpretation involves first
extracting the plan traces. Such recognition is further com-
plicated by the impedance mismatch between the (implicit)
planning models used by the human workers, and the model
available to the planner.

Our system uses both the techniques described above to
gather relevant information from the requester and the turk-
ers. The requester provides structured input that lists their
constraints as well as goals (and optionally cost and dura-
tion constraints), and can also provide a free unstructured
text description for the task. The turkers in turn also pro-
vide semi-structured data - they are given fields for activity
title, description, cost and duration. The turkers can also en-
ter free text descriptions of their suggestions; the system can
then automatically extract relevant actions by using Natu-
ral Language Processing (NLP) methods to match the input
against the planner’s model MP .

3.2 Steering the Crowd’s Plan
There are two main kinds of feedback an automated planner
can provide to the human workers:

Constraint Checking One of the simplest ways of gener-
ating helpful suggestions for the crowd is to check for quan-
titative constraints imposed by the requester that are violated
in the suggested activities. In terms of the tour planning sce-
nario, this includes: (i) cost of a particular activity; and (ii)
the approximate duration of an activity. If the requester pro-
vides any such preferences, our system is able to check if
they are satisfied by the crowd’s inputs.

Constructive Critiques Once the planner has some
knowledge about the plan that the turkers are trying to
propose (using the extraction and recognition methods de-
scribed above), it can also try to actively help the creation
and refinement of that plan by offering suggestions as part
of the alerts. These suggestions can vary depending on the
depth of the planner’s model. Some examples include: (i)
simple notifications of constraint violations, as outlined pre-
viously; (ii) plan critiques (such as suggestions on the order
of actions in the plan and even what actions must be present);
(iii) new plans or plan fragments because they satisfy the
requester’s stated preferences or constraints better; (iv) new
ways of decomposing the current plan (Nau et al. 2003); and
(v) new ways of decomposing the set of goals SG.

4 System Description
The following section describes in detail the AI-MIX sys-
tem that was deployed on Amazon’s MTurk platform to en-

gage the turkers in a tour planning task. The system is sim-
ilar to Mobi (Zhang et al. 2012) in terms of the types of
inputs it can handle and the constraint and quantity checks
that it can provide (we discuss this further in Section 5.1).
However, instead of using structured input, which severely
restricts the turkers and limits the scope of their contribu-
tions, our system is able to parse natural language from user
inputs and reference it against relevant actions in a domain
model. This enables more meaningful feedback and helps
provide a more comprehensive tour description.

4.1 Requester Input
The task description, as shown in Figure 2, is provided by
the requester in the form of a brief description of their pref-
erences, followed by a list of activities they want to execute
as part of the tour, each accompanied by a suitable hashtag.
For example, the requester might include one dinner activ-
ity and associate it with the tag #dinner. These tags are
used internally by the system to map turker suggestions to
specific tasks. The upper half of Figure 2 shows an example
of a requester task, which includes a block of text for the
turkers to extract context from, and structured task requests
associated with hashtags.

4.2 Interface for Turkers
In addition to the task description, the AI-MIX interface
also contains a section that lists instructions for success-
fully submitting a Human Intelligence Task (HIT) on Ama-
zon MTurk. HIT is the individual task that the turkers work
on, in this context consisting of either adding an action or
a critique, as discussed in more detail later. The remaining
components, arranged by their labels in the figure, are:

1. Requester Specification: This is the list of requests and
to-do items that are yet to be satisfied. All the unsatisfied
constituents of this box are initially colored red. When a
tag receives the required number of supporting activities,
it turns from red to green. Tags that originated from the
requester are classified as top-level tags, and are always
visible. Tags that are added by the automated planner or
by turkers are classified as lower priority, and disappear
once they are satisfied by a supporting activity.

2. Turker Inputs: Turkers can choose to input one of two
kinds of suggestions: (i) a new action to satisfy an existing
to-do item; or (ii) a critique of an existing plan activity.

3. Turker Responses: The “Existing Activities” box dis-
plays a full list of the current activities that are part of the
plan. New turkers may look at the contents of this box in
order to establish the current state of the plan. This com-
ponent corresponds to the Distributed Blackboard men-
tioned in Section 2.1.

4. Planner Critiques: The to-do items include automated
critiques of the current plan that are produced by the plan-
ner. In the example shown, “broadwayshow showing” is
a planner generated to-do item that is added in order to
improve the quality of the turkers’ plan.

Finally, the right hand portion of the interface consists of a
map, which can be used by turkers to find nearby points of
interest, infer routes of travel or the feasibility of existing



Figure 2: The AI-MIX interface showing the distributed blackboard through which the crowd interacts with the system.

suggestions, or even discover new activities that may satisfy
some outstanding tags.

Activity Adddition The “Add Activity” form is shown in
Figure 3. Turkers may choose to add as many new activi-
ties as they like. Each new activity is associated with one of
the to-do tags. After each activity is submitted, a quantita-
tive analysis is performed where the activity is (i) checked
for possible constraint (duration or cost) violations; or (ii)
critiqued by the planner.

Action Extraction In order to extract meaning from the
new activities described by the turkers, the system performs
parts of speech (PoS) tagging on the input text using the
Stanford Log-Linear Part-of-Speech tagger (Toutanova et al.
2003). It identifies the name of the suggested activity and
places that the turkers are referring to using the verb and
noun parts of the tagger’s output respectively.

Sub-Goal Generation AI-MIX uses the same tags used
by turkers while inputting activities in order to determine
whether the planner has additional subgoal annotations on
that activity. To facilitate this, the planner uses a primi-
tive PDDL (McDermott et al. 1998) domain description of
general activities that may be used in a tour-planning appli-
cations – this description corresponds to the planner model
MP introduced earlier. Examples of actions in MP include
high level activities such as visit, lunch, shop etc.
Each activity is associated with a list of synonyms, which
helps the planner in identifying similar activities. Currently,
we generate these synonyms manually, but it is possible to
automate this via the use of resources such as WordNet.
Each action also comes with some generic preconditions.
When the planner determines that a turker generated activity
matches one of the actions from its model, it generates sub-
goals to be added as to-do items back in the interface based

on the preconditions of that action. An example of an action
description (for the “visit” action) is given below:

(:action visit ;; synonyms: goto, explore

:parameters (?p - place)

:precondition (at ?p) ;; Getting to ?p,

;; Entrance fee ?p, ;; Visiting hours ?p

:effect (visited ?p))

In the example given above, the planner would pop up
the three preconditions – Getting to, Entrance fee,
and Visiting hours – as to-do sub-goals for any
visit actions suggested by turkers. The system also pro-
vides some helpful text on what is expected as a resolution
to that to-do item – this is indicated by the yellow “planner
critique” box in Figure 2.

Constraint Checking In addition to generating sub-goals
for existing activities, our system also automatically checks
if constraints on duration and cost that are given by the
requester are being met by the crowd’s plan. If these
constraints are violated, then the violation is automatically
added to the to-do stream of the interface, along with a de-
scription of the constraint that was violated. Turkers can
then choose to add an action that resolves this to-do item
using the normal procedure.

Adding Turker Critiques The turkers can also add cri-
tiques of the actions in the existing plan. To do this, they use
the form shown in the lower half of Figure 3. The turkers
click on an existing activity, and enter the note or critique
in a text box provided. Additionally, they are also asked to
enter a child tag, which will be used to keep track of whether
an action has been added to the plan that resolves this issue.
Turkers can add as many critiques as they want.

Though the current system uses only a preliminary form
of automated reasoning, this effort can be seen as the first



Figure 3: Adding and critiquing activities (plan actions) in the AI-MIX system.

step towards incorporating more sophisticated methods for
plan recognition and generation (Talamadupula and Kamb-
hampati 2013). A video run-through of our system can be
found at the following URL: http://youtu.be/73g3yHClx90.

5 Experiments
5.1 Experimental Setup
For our study, HITs were made available only to the turk-
ers within US (since the requests involved locations inside
the US) with a HIT approval rate greater than 50%. Turk-
ers were paid 20 cents for each HIT, and each turker could
submit 10 HITs per task. We used tour planning scenar-
ios for six major US cities, reused from the Mobi system’s
evaluation (Zhang et al. 2012). To measure the impact of
automated critiquing on the generated plans, we compared
the results from three experimental conditions:

C1: Turkers could give suggestions in free text after reading
the task description - there were no automated critiques.

C2: Turkers quantified their suggestions in terms of cost and
duration, and the system checked these constraints for vi-
olations with respect to the requester demands.

C3: In addition to C2, the system processed free-form text
from turker input, and extracted actions to match with our
planning model in order to generate alerts for sub-goals
and missing preconditions.

C1 and C2 were compared to the proposed approach, C3,
separately. Each set was uploaded at the same time, with
the same task description and HIT parameters. In the first
run, C3 and C2 were compared on 6 scenarios (New York,
Chicago, San Francisco, Las Vegas, Washington and Los
Angeles) and were given 2 days before the HITs were ex-
pired. The interfaces for both C3 and C2 were made identi-
cal to eliminate any bias. In the second run, the conditions
C1 and C3 were run over a period of one day, for the two sce-
narios which were most popular in the first run (New York
and Chicago). For each of these tasks, the requester prepop-
ulated the existing activities with one or two dummy inputs
that reflect the kinds of suggestions she was looking for. In
sum, we had more than 150 turkers who responded to our
HITs. The analysis that follows is from the 35 turkers who
contributed to the final comparisons among C1, C2, and C3.

5.2 Task Completion Latency
When C3 was compared to C1 over a period of one day, we
found that C3 received four responses from 3 distinct turk-
ers, whereas C1 failed to attract any responses. This might
indicate that the presence of the “TO DO” tags generated by
the automated critiquing component was helpful in engag-
ing the turkers and guiding them towards achieving specific
goals. However, there may also be alternate explanations
for the fact that C1 did not receive any inputs, such as turker
fatigue, or familiarity with the C3 interface from previous
runs. There is need for further experimentation before these
results can be conclusively proved.

We also looked at the number of HITs taken to complete
the tasks for each of the scenarios. After the HITs were
expired, none of the tasks were entirely complete (a task
is “completed” when there are no more outstanding to-do
items), but C2 had 3.83 unfulfilled tags per HIT as compared
to 10.5 for C3. As expected, the task completion latency
seems to have increased for C3, since alerts from the system
drive up the number of responses required before all the con-
straints are satisfied. As shown in the following paragraph,
however, the increased quality of generated plans may jus-
tify this additional latency.

5.3 Generated Tour Plan Quality
We see that the quality of the plans, in terms of detail and de-
scription, seems to increase in C3, since we now have users
responding to planner critiques to further qualify suggested
activities. For example, a turker suggested “not really fun,
long lines and can not even go in and browse around” in re-
sponse to a planner generated tag (related to a “fun club”
activity suggested previously), while another suggested a
“steamer” in response to a planner alert about “what to eat
for lunch”. A comparison between the plans generated for
C2 and C3 (for New York City) is given in Table 1. This
seems to indicate that including a domain description in ad-
dition to the simplistic quantity and constraint checks in-
creases the plan quality.

5.4 Role Played by the Planner Module
We now look at some statistics that indicate the role played
by the automated module in the tasks. We received a to-



Show: Go to TKTS half ticket discount booth. You have to stand in line
early but it’s an authentic nyc experience #show(3 hours)(200.0 $)
Show: Go to show #show(3 hours)(200.0 $)
Show: ABSOLUTELY CANNOT go wrong with Phantom of the Opera
#show(3 hours)(200.0 $)
Lunch: Alice’s Tea Cup #lunch(20.0 $)
Design: Walk around the Garment District (go into shops) just south of
Times Square. They often print their own fabrics. #design(2 hours)(0.0 $)
Dessert: Serendipity #dessert(1 hours)(10.0 $)
piccolo angolo: Italian in the Village - real deal #italiandinner(2
hours)(60.0 $)
Lombardi’s Pizza: #italian dinner #italiandinner todo1
Ice Cream: http://www.chinatownicecreamfactory.com/ #italiandin-
ner todo0
#lunch: Mangia Organics #lunch todo0
watch Wicked (musical): Do watch Wicked the musical. It’s a fantas-
tic show and one of the most popular on Broadway right now! #broad-
wayshow(3 hours)(150.0 $)
watch How to Succeed in Business: Also a great show, a little less grand
than Wicked. #broadwayshow(3 hours)(150.0 $)
Activity Steamer: #lunch #lunch todo1
Paradis To-Go: Turkey & Gruyere is pretty delicious. The menu is simple,
affordable, but certainly worth the time #lunch(1 hours)(10.0 $)
cupcakes!: Magnolia Bakery on Bleecker in the Village #dessert(1
hours)(10.0 $)

Table 1: Sample activity suggestions from turkers for the
two conditions: C2 (top) and C3 (bottom).

tal of 31 new activity suggestions from turkers, of which 5
violated quantity constraints. The C3 interface attracted 39
responses, compared to 28 for C2, which may indicate that
the planner tags encouraged turker participation.

Note that in the AI-MIX interface, there is no perceptual
difference between the critiques generated by the planner
and the critiques suggested by humans. With this in mind,
there were 8 flaws pointed out by humans, but none were
acted upon by other turkers; the planner on the other hand
generated 45 critiques, and 7 were acted upon and fixed by
turkers. This seems to indicate that turkers consider the plan-
ner’s critiques more instrumental to the generation of a high
quality plan than those suggested by other turkers. Though
these results are not entirely conclusive, and might also be
attributed to possibilities like the critiques of the planner be-
ing more popular because they might have been easier to
solve; there is enough evidence to suggest that the presence
of an automated system does help to engage and guide the
focus of the crowd.

6 Conclusion
In this paper, we presented a system, AI-MIX, that is a first
step towards using an automated planner in a crowdsourced
planning application. We identified two major challenges in
achieving this goal: interpretation and steering. We then de-
scribed the framework of AI-MIX, and showed how these
challenges were handled by our system – using forced struc-
ture and structure extraction for interpreting actions; and us-
ing constraint checking and automated planner critiques for
steering. We also presented preliminary empirical results
over the tour planning domain, and showed that using an au-
tomated planner results in the generation of better quality

plans. Interestingly, it is possible to improve the complete-
ness of the domain model of a planner over time (Yang, Wu,
and Jiang 2007). We are continuing to run experiments us-
ing more scenarios and larger time scales to provide further
validation for our hypotheses. We are also looking at the
problem of eliciting information (Kaplan et al. 2013) from
the crowd in order to go from the current list of activities
suggested by the crowd, to a more structured plan in the tra-
ditional sense of the word.

Acknowledgments. This research is supported in part
by the ARO grant W911NF-13-1-0023, the ONR grants
N00014-13-1-0176 and N0014-13-1-0519, and a Google
Research Grant.

References
Ferguson, G.; Allen, J.; and Miller, B. 1996. Trains-95: Towards a
mixed-initiative planning assistant. In Proc. of AIPS-96, 70–77.
Kaplan, H.; Lotosh, I.; Milo, T.; and Novgorodov, S. 2013. An-
swering planning queries with the crowd. In Proc. of VLDB En-
dowment 6(9):697–708.
Lasecki, W. S.; Bigham, J. P.; Allen, J. F.; and Ferguson, G. 2012.
Real-time collaborative planning with the crowd. In Proc. of AAAI.
Law, E., and Zhang, H. 2011. Towards large-scale collaborative
planning: Answering high-level search queries using human com-
putation. In Proc. of AAAI.
Lotosh, I.; Milo, T.; and Novgorodov, S. 2013. CrowdPlanr: Plan-
ning Made Easy with Crowd. In Proc. of ICDE. IEEE.
McDermott, D.; Knoblock, C.; Veloso, M.; Weld, S.; and Wilkins,
D. 1998. PDDL–the Planning Domain Definition Language: Ver-
sion 1.2. Yale Center for Computational Vision and Control, Tech.
Rep. CVC TR-98-003/DCS TR-1165.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu,
D.; and Yaman, F. 2003. Shop2: An HTN planning system. JAIR
20:379–404.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recognition
using off-the-shelf classical planners. In Proc. of AAAI.
Talamadupula, K., and Kambhampati, S. 2013. Herding the
crowd: Automated planning for crowdsourced planning. CoRR
abs/1307.7720.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn, P.;
and Scheutz, M. 2010. Planning for human-robot teaming in open
worlds. TIST 1(2):14.
Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic dependency
network. In Proc. of HLT-NAACL.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models from
plan examples using weighted MAX-SAT. Artificial Intelligence
Journal.
Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D.; and Horvitz,
E. 2012. Human Computation Tasks with Global Constraints. In
Proc. of CHI, 217–226.
Zhang, H.; Andre, P.; Chilton, L.; Kim, J.; Dow, S. P.; Miller, R. C.;
MacKay, W.; and Beaudouin-Lafon, M. 2013. Cobi: Communi-
tysourcing Large-Scale Conference Scheduling. In CHI Interactiv-
ity 2013.
Zhuo, H. H.; Kambhampati, S.; and Nguyen, T. A. 2012. Model-
lite case-based planning. CoRR abs/1207.6713.


