
MINING AND USING COVERAGE AND OVERLAP STATISTICS

FOR DATA INTEGRATION

by

Zaiqing Nie

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

ARIZONA STATE UNIVERSITY

May 2004

MINING AND USING COVERAGE AND OVERLAP STATISTICS

FOR DATA INTEGRATION

by

Zaiqing Nie

has been approved

March 2004

APPROVED:

, Chair

Supervisory Committee

ACCEPTED:

Department Chair

Dean, Graduate College

ABSTRACT

Query processing in the context of integrating autonomous data sources on the In-

ternet has received significant attention of late. In contrast to traditional query processing

scenarios, in which each relation is stored in the same primary database and in which

completeness of answers is expected by users, data integration scenarios involve handling

relations that are stored across multiple and potentially overlapping sources and dealing

with conflicting objectives in terms of what coverage of answers users want and how much

execution cost they are willing to bear for achieving the desired coverage. Hence, query pro-

cessing in data integration requires coverage and overlap statistics about these autonomous

sources to generate optimal query plans. This dissertation first presents StatMiner, an ef-

fective statistics mining approach which automatically generates attribute value hierarchies,

discovers frequently accessed query classes, and learns coverage and overlap statistics only

with respect to these classes. The dissertation then introduces Multi-R, a multi-objective

query optimizer which uses coverage and overlap statistics to support joint optimization

of coverage and cost of query plans. The efficiency of StatMiner and the effectiveness of

the learned statistics are demonstrated in the context of BibFinder, a publicly available

bibliography mediator developed as a testbed for this work. The empirical evaluation of

Multi-R also shows that the generated query plans are significantly better than the existing

approaches, both in terms of planning cost and in terms of plan execution cost.

iii

To my wife.

iv

ACKNOWLEDGMENTS

First, I would like to thank my advisor Professor Subbarao Kambhampati for inspir-

ing me to aim high and for giving me freedom to be creative. He gave freely of his time

and wisdom to help me stimulate new ideas and to polish my work. I am deeply grateful

to him for his constant support, guidance, and encouragement during my graduate studies

in the United States.

A big thanks goes to Professor K. Selçuk Candan , Professor Huan Liu, and Professor

Susan D. Urban for valuable advice and encouragement. I would specially like to acknowl-

edge my outside committee member, Professor Louiqa Raschid of University of Maryland for

giving many insightful suggestions and for taking time from her busy schedule to participate

in my dissertation.

My special thanks to Thomas Hernandez, Ullas Nambiar and Sreelakshmi Vaddi for

many helpful critiques and for collaborating with me on publications that are parts of the

dissertation. To my friends Binh Minh Do, Romeo Sanchez Nigenda, Dan Bryce, Menkes

van den Briel, Jianchun Fan, William Cushing, Dr. Terry Zimmerman, Dr. Xiaomin Li,

Dr. Biplav Srivastava, Lei Yu, Le-Chi Tuan, Nam Tran, Hung. V. Nguyen, and all other

members of the AI lab, thanks for their invaluable companionship.

I am and will always be very grateful to my parents who have supported me with

their love and encouragement throughout my education. Last but not least, special thanks

to my wife, Xiaoli Hu, who has supported me with endless love, caring, and encouragement

from the beginning to the end of this work.

This research is supported in part by the NSF grant IRI-9801676 and the ASU ET-I3

initiative grant ECR A601.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER 1 INTRODUCTION . 1

1.1. Motivation for Mining and Using Coverage and Overlap Statistics 1

1.2. BibFinder: Our Motivating Scenario . 3

1.3. Challenges in Mining and Using Coverage and Overlap Statistics 5

1.4. State of the Art . 6

1.5. Overview of our Solution . 7

1.6. Contributions of the Dissertation . 8

1.7. Outline of the Dissertation . 10

CHAPTER 2 BACKGROUND: DATA INTEGRATION SYSTEMS 12

2.1. System Overview . 12

2.1.1. Architecture . 12

2.1.2. Application Scenarios . 13

2.2. Query Reformulator . 14

2.3. Query Optimizer and Statistics Miner . 15

2.4. Query Executor and Wrapper . 16

CHAPTER 3 MINING COVERAGE AND OVERLAP STATISTICS 18

3.1. Motivation . 18

3.2. AV Hierarchies and Query Classes . 23

vi

Page

3.3. Gathering Base Data . 27

3.3.1. Query List . 27

3.3.2. Probing Queries . 28

3.4. Generating AV Hierarchies Automatically 30

3.4.1. Generating AV Hierarchies . 32

3.4.2. Flattening AV Hierarchies . 34

3.5. Discovering Frequent Query Classes . 36

3.5.1. Discovering Candidate Frequent Classes 37

3.5.2. Pruning Low Access Probability Classes 39

3.6. Mining Coverage and Overlap Statistics . 40

3.7. Using Learned Coverage and Overlap Statistics 41

3.7.1. Query Mapping . 41

3.7.2. Computing Residual Coverage . 43

3.8. Experimental Setup . 45

3.8.1. BibFinder Testbed . 46

3.8.2. Controlled Datasets for Evaluating the Size-based Approach 50

3.8.3. Algorithms and Evaluation Metrics 51

3.9. Experimental Results . 53

3.9.1. Results of Evaluating Frequency-based Approach over BibFinder . . 56

3.9.2. Results of Evaluating the Size-based Approach over BibFinder . . . 59

3.9.3. Results of Evaluating the Size-based Approach over Controlled Data

Sources . 63

3.10. Discussion . 68

vii

Page

3.11. Summary . 70

CHAPTER 4 JOINT OPTIMIZATION OF COVERAGE AND COST WITH MULTI-

R . 72

4.1. Motivation . 73

4.2. Parallel Query Plans . 79

4.2.1. Queries and Parallel Query Plans . 79

4.2.2. Cost and Coverage Models . 81

4.2.3. Combining Cost and Coverage . 84

4.3. Generating Query Plans . 85

4.3.1. Subplan Generation . 85

4.3.2. A Dynamic Programming Approach for Parallel Plan Generation . . 86

4.3.3. A Greedy Approach . 89

4.4. Empirical Evaluation . 90

4.5. Discussion . 97

4.5.1. Multi-R Evaluation . 97

4.5.2. Multi-objective Query Optimization 97

4.6. Summary . 100

CHAPTER 5 RELATED WORK . 102

5.1. Mining Coverage and Overlap Statistics . 102

5.2. Multi-Objective Query Optimization . 103

5.3. Relation to Adaptive Query Optimization 104

5.3.1. Existing Adaptive Query Evaluation Approaches 105

viii

Page

5.3.2. Parameterized Decision Model . 106

5.3.3. Adaptive Query Processing and my Dissertation Work 107

CHAPTER 6 CONCLUSION and FUTURE DIRECTIONS 109

6.1. Incremental Update of Statistics . 110

6.2. First Tuples Fast . 111

6.3. Applications . 112

REFERENCES . 113

ix

LIST OF TABLES

Table Page

1. Statistics for the sources in the example system 73

x

LIST OF FIGURES

Figure Page

1. The BibFinder user interface . 3

2. Data integration system architecture . 13

3. Keyword distribution in BibFinder user queries 19

4. Year distribution in BibFinder user queries 19

5. StatMiner architecture . 22

6. AV hierarchies and the corresponding query class hierarchy 24

7. A query list fragment . 28

8. The GAVH algorithm . 32

9. An example of flattening AV hierarchy . 35

10. The FAVH algorithm . 35

11. The DFC algorithm . 37

12. Ancestor class set generation procedure . 38

13. The PLC procedure . 40

14. Algorithm for computing residual coverage 45

15. Learned attribute value hierarchy for the conference attribute. Note that

only the last cluster node (i.e. qc397) of the highest level nodes has been

unfolded. 48

16. Subject hierarchy . 51

17. Cover and year hierarchy . 52

18. The total number of classes learned . 53

19. The total amount of memory needed for keeping the learned statistics in

BibFinder . 54

xi

Figure Page

20. The average distance between the estimated statistics and the real coverage

and overlap values. 54

21. The average number of answers BibFinder returns by executing the query

plans with top 2 sources. 55

22. Precision for query plans with top 2 sources. 55

23. Precision for query plans with top 3 sources. 56

24. The percent of the total source-calls that are irrelevant for query plans with

top 1 sources. 56

25. Comparing average precision of query plans for top 3 sources obtained using

statistics through different probing strategies 60

26. Comparing average number of answers returned by BibFinder by execut-

ing query plans for top 3 sources obtained using statistics through different

probing strategies . 61

27. StatMiner learning time for various thresholds 65

28. Pruning of classes by StatMiner . 65

29. Comparing average number of answers by executing query plans for top 5

sources obtained by different planning algorithms using learned statistics . . 66

30. Comparing average precision of query plans for top 5 sources obtained by

different planning algorithms using learned statistics 66

31. Multi-R architecture . 78

32. A parallel query plan . 80

xii

Figure Page

33. Variation of planning time with the query size (when the the number of

relevant sources per subgoal is held constant at 8). X axis plots the query

size while Y axis plots the planning time. 92

34. Variation of planning time with number of relevant sources per subgoal (for

queries of size 3). X axis plots the query size while Y axis plots the planning

time. 92

35. Comparing the quality of the plans generated by ParPlan-DP algorithm with

those generated by [LRO96] (for queries of 4 subgoals), while the weight in

the utility measure is varied. X axis shows the weight value in the utility

measure and Y axis plots the cost and coverage of our algorithm expressed

as a percentage of the cost and coverage provided by [LRO96]. 94

36. Ratio of the execution cost of the plans given by ParPlan-DP to that given

by [LRO96], for a spectrum of weights in the utility metric and parallelism

facter β in the response time estimate. X axis varies the coverage-cost tradeoff

weights used in the utility metric, and Y axis shows the ratio of execution

costs for different β. 94

37. Ratio of the utility of the plans given by ParPlan-Greedy to that given by

ParPlan-DP for a spectrum of weights in the utility metric. X axis varies

the weight used in the utility metric, and Y axis shows the ratio of utilities. 95

xiii

Figure Page

38. Comparing the Coverage and cost of the plans found by ParPlan-DP by

using different weights in Utility function, on queries of 4 subgoals. X axis

varies the weights in the utility function, while the Y axis shows the cost and

coverage as a percentage of the cost and coverage offered by our ParPlan-DP

with weight=1. 96

39. Query processing using combining multiple criteria approach 99

40. Query processing using pareto curve . 100

xiv

CHAPTER 1

INTRODUCTION

This dissertation studies how to mine and use coverage and overlap statistics about

autonomous data sources to perform efficient query processing in a data integration system.

We begin this chapter by showing the need for coverage and overlap statistics, and the

challenges in mining and using them in query optimization. Next, we discuss the previous

state of the art techniques for solving these challenges. We then outline our solution. Finally,

we list our contributions and give a road map for the rest of the dissertation.

1.1. Motivation for Mining and Using Coverage and Overlap Statistics

With the vast number of autonomous information sources available on the Internet

today, users have access to a large variety of data sources. Data integration systems [LRO96,

DGL00, LKG99, PL00, NKH03] are being developed to provide a uniform interface to a

multitude of information sources, query the relevant sources automatically and restructure

the information from different sources. Query processing in the context of integrating

autonomous data sources on the Internet has thus received significant attention of late.

Some of the challenges in supporting such query processing – that is, the need to reformulate

queries posed to the mediator into an equivalent set of queries on the data sources, the

2

ability to handle sources with limited access capabilities, and the need to handle uncertainty

during execution time, have been addressed previously in [LRO96, UF98, FLMS99, IFF+99,

AH00, DGL00, PL00]. There are however two critical aspects of query processing in data

integration systems that have not yet been tackled adequately:

The Need for Mining Coverage and Overlap Statistics: In a data integration sce-

nario, a user interacts with a mediator via a mediated schema. A mediated schema is

a set of virtual relations, which are stored across multiple and potentially overlapping

data sources, each of which may only contain a partial extension of the relation. A

naive way of answering a user query would be to send it to all the mediated sources,

wait for the results, eliminate duplicates, and return the answers to the user. This not

only leads to increased query processing time and duplicate tuple transmission, but

also unnecessarily increases the load on the individual sources. A more efficient and

polite approach would be to direct the query only to the most relevant sources. Query

processing in data integration [FKL97, NLF99, NK01, DH02] thus requires the ability

to figure out what sources are most relevant to the given query, and in what order

those sources should be called. For this purpose, the query optimizer needs to access

statistics about the coverage of the individual sources with respect to a given query,

as well as the degree to which the answers they export overlap. Given that sources

tend to be autonomous in a data integration scenario, it is impractical to assume that

the sources will export such statistics. Consequently, data integration systems need to

be able to learn the coverage and overlap statistics about the sources they integrate.

The Need for Joint Optimization of Cost and Coverage of Query Plans: Users

may have differing objectives in terms of what coverage they want to achieve and

3

Figure 1. The BibFinder user interface

how much execution cost they are willing to bear for achieving the desired coverage.

Consequently, selecting high-quality plans in data integration requires the ability

to consider the coverage offered by various sources, and form a query plan with

the combination of sources that is estimated to be a high-quality plan given the

cost-coverage tradeoffs of the user.

In the next section, we will illustrate these challenges using an example scenario.

1.2. BibFinder: Our Motivating Scenario

BibFinder Scenario: We have been developing BibFinder ([BF], see Figure 1), a publicly

fielded computer science bibliography mediator, which integrates several online Computer

Science bibliography sources. It currently covers CSB, DBLP, Network Bibliography, ACM

Digital Library, ACM Guide, IEEE Xplore, ScienceDirect, and CiteSeer. Plans are un-

derway to add several additional sources including AMS MathSciNet and Computational

Geometry Bibliography. Since its unveiling in December 2002, BibFinder has been getting

on the order of 200 queries a day.

The sources integrated by BibFinder are autonomous and partially overlapping. By

combining the sources, BibFinder can present a unified and more complete view to the

4

user. However it also brings some interesting optimization challenges. The global schema

exported by BibFinder can be modeled in terms of the relation:

paper(title, author, conference/journal, year),

and the queries can be seen as selection queries on the paper relation. Each of the individual

sources may export only a subset of the global relation. For example, Network Bibliography

only contains publications in Networks, DBLP gives more emphasis to Database publica-

tions, while ScienceDirect has only archival journal publications.

As we discussed earlier, an efficient and polite way of answering a user query would

be to direct the query only to the most relevant sources. Suppose the user asks a selection

query

Q(title,author,year) :− paper(title, author, conference/journal, year),

conference/journal =“SIGMOD”.

For answering this query, DBLP, ACM Digital Library, and ACM Guide are most relevant,

while Network Bibliography is much less relevant. Furthermore, since DBLP stores records

of virtually all the SIGMOD papers, a call to ACM Digital Library and ACM Digital Guide

is largely redundant. In practice, ACM Digital Library is not completely redundant since

it often provides additional information about papers – such as abstracts and citation links

– that DBLP does not provide. BibFinder handles this by dividing the paper search into

two phases–in the first phase, the user is given a listing of all the papers that satisfy his/her

query. BibFinder uses a combination of three attributes: title, author, and year as the

primary key to uniquely identify a paper across sources. In the second phase, the user can

ask additional details on specific papers. While it is important to call every potentially

relevant source in the second phase, we do not have this compulsion in the first phase. For

the rest of this dissertation, all our references to BibFinder are to its first phase.

5

To judge the source relevance however, BibFinder needs to know the coverage of each

source S with respect to the query Q, i.e. P (S|Q), the probability that a random answer

tuple for query Q belongs to source S. Given this information, we can rank all the sources

in descending order of P (S|Q). The first source in the ranking is the one we would want

to access first while answering query Q. Since the sources may be highly correlated, after

we access the source S′ with the maximum coverage P (S′|Q), the second source S′′ that

we access must be the one with the highest residual coverage (i.e. provides the maximum

number of those answers that are not provided by the first source S′). Specifically we need

to determine the source S′′ that has the next best rank in terms of coverage but has minimal

overlap (common tuples) with S′.

1.3. Challenges in Mining and Using Coverage and Overlap Statistics

If we have the coverage and overlap statistics for every possible query, we can get the

complete order in which to access the sources, and select only the relevant sources to answer

user queries. However, it would be prohibitively costly to learn and store statistics with

respect to every source-query combination, and overlap information about every subset of

sources with respect to every possible query. The difficulty here is two-fold. First, there is

the cost of “learning” – which would involve probing the sources with all possible queries a

priori, and computing the coverage and overlap with respect to the queries. Second, there is

the cost of “storing” the statistics. For example, storing statistics for selection queries with

respect to a single mediated relation will necessitate Nq ∗ 2NS different statistics, where Nq

is the number of different selection queries on the mediated relation and NS is the number

of mediated sources. Since both the number of possible queries1 and the number of sources
1Although in real data integration scenarios, it is impractical to assume we can know the entire query

population a priori.

6

exporting the relation could be very large, it is impractical to keep all the statistics in the

main memory of a mediator.

Once we have the coverage and overlap statistics, effectively using them in query

optimization also presents several challenges. If we want to get a query plan that can cover

more relevant answers with limited cost, it is critical to consider execution costs while doing

source selection (rather than after the fact). In order to take the cost information into

account, we have to consider the source-call ordering during planning, since different orders

will result in different execution costs for the same logical plan. However, the search space

of all query plans can be prohibitively large. In particular, for a join query with n subgoal

relations, and m sources exporting each subgoal relation, the size of the search space is

2m×n × n!, as there can be 2m source combinations for each subgoal, hence 2m×n possible

logical query plans, and the number of subgoal orders for each plan is n!.

1.4. State of the Art

The utility of quantitative coverage statistics to rank the sources was first explored

by Florescu et. al. [FKL97]. However the primary aim of the effort was to model the

coverage and overlap statistics, and it did not discuss how such statistics could be learned.

The work introduced two simple algorithms to use coverage and overlap statistics to rank

mediated sources, however they did not address how these statistics can be used along with

other types of statistics (such as response time) in query optimization. Thus far there has

not been any work on effectively learning the statistics in the first place.

More recent work [NLF99; DH02] tries to use coverage and overlap statistics to-

gether with other types of statistics (including response time) for optimizing queries in data

integration. However they use decoupled strategies – attempting to optimize coverage and

7

cost in two separate phases. Specifically, they first generate a set of feasible “linear plans”

that contain at most one source for each query conjunct, and then rank these linear plans

in terms of the expected coverage offered by them. Finally, they select the top N plans from

the ranked list and execute them. Since sources tend to have a variety of access limitations,

this type of phased optimization of cost and coverage can unfortunately lead to significantly

costly planning and inefficient plans.

1.5. Overview of our Solution

This dissertation introduces a novel query processing framework in which we adapt

data mining techniques to automatically gather coverage and overlap statistics about the

mediated sources, and use the gathered statistics to support multi-objective query opti-

mization. Specifically, my dissertation introduces StatMiner, a statistics mining module

for efficient query processing in a data integration system. The purpose of StatMiner is

to group queries into classes and to efficiently discover frequent query classes for which we

would like to store statistics. It starts with a list of user queries which can be collected

from the log of queries submitted to a mediator. The query list not only gives the specific

queries submitted to the mediator, but also coverage and overlap statistics on how many

tuples for each query came from which source. For mediators in their beginning stages,

a query list can be generated by probing the mediated sources. The query list is used to

automatically generate attribute value hierarchies2 which are then employed to form query

classes. In addition, the query list is used to prune query classes that subsume less than a

given number of user queries (specified by a frequency threshold). For each of the remaining

classes, coverage and overlap statistics are learned.
2An attribute value hierarchy over an attribute in a mediated relation is a hierarchical classification of

the values of the attribute. See Section 3.2 for a detailed discussion.

8

We use these statistics to select relevant sources in query optimization. Specifically,

we discuss how the learned statistics can be used to estimate the coverage and overlap of the

sources for a new user query, and present Multi-R, a multi-objective query optimizer which

supports joint optimization of coverage and cost of query plans using coverage and overlap

statistics. Multi-R searches in the space of “parallel” query plans that support parallel

access to multiple sources for each subgoal conjunct. The parallel plans are evaluated in

terms of a general “utility” metric, combining both cost and coverage of the plan. The

plan generation process takes into account the potential parallelism between source calls,

and the binding compatibilities between the sources. It includes two interleaved processes:

the first is a search conducted in the space of subgoal orders, and the second is a greedy

procedure that provides a high-quality subplan for a given subgoal.

The efficiency of StatMiner and the effectiveness of the learned statistics in selecting

relevant sources are demonstrated in the context of BibFinder, a publicly available bib-

liography mediator we developed as a testbed for this work. Multi-R is evaluated using

simulated source statistics, and the experimental results show that the generated query

plans are significantly better than the existing approaches, both in terms of planning cost

and in terms of plan execution cost.

1.6. Contributions of the Dissertation

Up to the time of this dissertation, most works have concentrated on only how to

use coverage and overlap statistics using decoupled strategies. There has been no work

on gathering these statistics, and the only work [FLK97] which discusses how to model

coverage and overlap statistics requires a topic hierarchy. However the manual creation of

9

topic hierarchies is known to be laborious and error-prone. The main contributions of the

dissertation are:

• A model for supporting a hierarchical classification of the set of queries. We introduce

the concept of attribute value hierarchy, and a method to automatically generate these

hierarchies. Using the learned hierarchies, user queries can be conveniently classified

into classes without requiring manual intervention.

• A frequency-based approach for dynamically controlling the resolution of the learned

statistics. In order to keep both learning and storage costs down, we learn statistics

only with respect to a smaller set of “frequently asked” query classes. This strategy

trades accuracy of statistics for reduced statistics learning/storing costs. The motiva-

tion for such an approach is that it is impractical for a mediator to provide accurate

statistics for every possible query, but it can still achieve a reasonable average accuracy

by keeping more accurate statistics for frequent queries, and less accurate statistics

for infrequent queries. The effectiveness of this approach is predicated on the belief

that in real-world scenarios, the distribution of queries posed to a mediator is not

uniform, but rather Zipfian [Zipf29] (See Section 3.1 for a detailed discussion).

• A size-based approach to provide statistics for mediators at the beginning stages.

For mediators without the knowledge of user query distributions, the initial statistics

are learned based on the assumption that large query classes will be accessed more

frequently.

• A joint query optimization approach to optimize parallel query plans in terms of both

coverage and cost. We introduce ways in which cost and coverage of query plans can

be estimated and combined into an aggregated utility measure. The parallel plan

10

generation process takes into account the potential parallelism between source calls,

and the binding compatibilities between the sources included in the plan. An impor-

tant advantage of parallel plans over linear plans is that they avoid the significant

redundant computation inherent in executing all feasible linear plans separately. Our

approach involves searching in the space of subgoal orders, and for each subgoal order

efficiently generating a high-quality parallel plan. It winds up adding very little addi-

tional planning overhead over that of searching in the space of linear plans, and even

this overhead is more than made up for by the fact that we avoid the inefficiencies of

phased optimization.

• BibFinder – An effective testbed for data integration research. We consider our

BibFinder testbed itself as a contribution because of the perennial problem of lack of

effective testbeds for data integration research as pointed out by leading researchers

in the community in the Lowell Report [Lowell03].

1.7. Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides background

about data integration systems and introduces the basic components of a data integration

system. In Chapter 3, we describe StatMiner in detail. Specifically we present algorithms

to automatically learn attribute value hierarchies and to discover frequent query class. We

also present extensive experiments performed on both BibFinder and a controlled dataset.

Chapter 4 presents Multi-R. We describe the models for estimating the cost and coverage of

parallel plans and present two algorithms to generate parallel query plans and analyze their

complexity. We also present a comprehensive empirical evaluation which demonstrates that

11

Multi-R can offer high utility plans (in terms of cost and coverage) for a fraction of the

planning cost incurred by the existing approaches that use phased optimization with linear

plans. Chapter 5 then discusses related work. Chapter 6 concludes and presents several

important directions in which my dissertation work could be extended.

CHAPTER 2

BACKGROUND: DATA INTEGRATION SYSTEMS

In this chapter we will introduce the architecture of a data integration system, and

briefly summarize the existing work on data integration systems.

2.1. System Overview

Data integration systems provide their users with a virtual mediated schema to query

over. This schema is a uniform set of relations serving as the application’s ontology and

is used to provide the user with a uniform interface to a multitude of heterogeneous data

sources, which store the actual available data. We model the contents of these data sources

with a set of source relations which are defined as views over the mediated schema relations.

2.1.1. Architecture. In Figure 2, we show the architecture of a data integration

system. In a data integration system, the user queries asked via the mediated schema are

reformulated into queries over the integrated data sources. The query optimizer will find

a high-quality query plan using the statistics learned by the statistics miner. The query

executor will then execute the plan by calling the wrappers for the integrated data sources.

We will explain each of these components in detail in the following sections.

13

Reformulator

Optimizer

Executor

Wrapper
Wrapper
Wrapper

Data

Source

Data

Source

Data

Source

Statistics
 Statistics

Miner

User

Queries

Query Results

Source Wrappers

Query Processor

Mediated Schema

Figure 2. Data integration system architecture

2.1.2. Application Scenarios. Two types of application scenarios have been con-

sidered in the literature:

• Enterprise-oriented mediators: Integrating a set of heterogeneous database systems

owned by a given corporation/enterprise;

• Domain-oriented mediators: Integrating a set of data sources that export information

related to some specific application domain (e.g. BookFinder (www.boobfinder.com):

comparison shopping of books, BibFinder: integration of multiple bibliography sources

etc.).

In the first type of application scenario, we would expect that the set of data sources

is relatively stable, and that the mediation is “authorized” (in that the data sources are

aware that they are being integrated). In domain-oriented mediators, the set of data sources

may be changing, and more often than not, the mediation may not have been explicitly

14

authorized by the sources. Systems such as Garlic [HKWY97], TSIMMIS [CGMH94], and

HERMES [ACPS96] can be characterized as aiming at enterprise-oriented applications,

while InfoMaster [GGKS95], Information Manifold [LRO96], Occam [KW96], Razor [FW97],

DISCO [TRV98], Emerac [LKG99, KLN+04] as well as the BibFinder system [NKH03]

address the domain-oriented applications. My dissertation concentrates on domain-oriented

mediators, although much of the work can also be applied to enterprise-oriented mediators.

2.2. Query Reformulator

There are two broad approaches for modeling source and mediator schemas [Lev00].

The “global as view” (GAV) approach involves modeling the mediator schema as a view

on the (union of) source schemas. The “local as view” (LAV) approach involves modeling

the sources schemas as views on the mediated schema. The GAV approaches make query

planning relatively easy as a query posed on the mediated schema can directly be rewritten

in terms of the source schemas. The LAV approach, in contrast, would require a more

complex rewriting phase to convert the query posed on the mediator schema to a query on

the sources. The advantage of the LAV approach however is that adding new sources to

a mediator involves simply modeling them as views on the mediated schema, while in the

GAV approach, the mediated schema has to be rewritten every time a new source is added.

Systems that address integration in the context of enterprise-oriented applications, such as

Garlic, TSIMMIS and HERMES use the GAV approach as they can be certain of a relatively

stable set of sources. In contrast, systems aimed at domain-oriented applications, such as

the Information Manifold InfoMaster, Emerac, and BibFinder use the LAV approach.

In the LAV approach, the mediator builds a virtual global schema for the infor-

mation that the user is interested in, and describes the accessible information sources as

15

materialized views on the global schema (see [LK97]). The user query is posed in terms

of the relations of the global schema. Since the global schema is virtual (in that its ex-

tensions are not stored explicitly anywhere), computing the query requires rewriting (or

“folding” [Qia96]) the query such that all the EDB predicates in the rewrite correspond

to the materialized view predicates that represent information sources. Several researchers

[LRO96,Qia96,KW96,DG97,DL97] have addressed this rewriting problem.

2.3. Query Optimizer and Statistics Miner

The other main difference among information integration systems is the types of ap-

proaches used for query optimization. Systems addressing integration in enterprise-oriented

applications can count on the availability of response time related statistics on the databases

(sources) being integrated. Thus Garlic, TSIMMIS, and HERMES systems attempt to use

parameterized decision model for query planning. Systems addressing domain-oriented

applications, on the other hand, cannot count on having access to statistics about the in-

formation sources. Thus, either the mediator has to learn the statistics it needs, or will

have to resort to optimization algorithms that are not dependent on complete statistics

about sources. Both Infomaster and Information Manifold system use heuristic techniques

for query optimization.

My dissertation assumes that a query optimizer uses a parameterized decision model

with statistics which were gathered by the mediator using a statistics mining component.

There has been some previous work on learning database statistics both in multi-database

literature and data integration literature. Much of it, however, focused on learning response

time statistics. Zhu and Larson [ZL96] describe techniques for developing regression cost

models for multi-database systems by selective querying. Adali et. al. [ACPS96] discuss

16

how keeping track of rudimentary access statistics can help in doing cost-based optimiza-

tions. More recently, the work by Gruser et. al. [GRZ+00] considers mining response

time statistics for sources in data integration scenarios, and the work by Zadorozhny et.

al. [ZRV+02] discuss how to use mined response time statistics in data integration. In

contrast, my dissertation focuses on learning coverage and overlap statistics. As has been

argued by us [NK01] and others [DH02], query optimization in data integration scenarios

requires both types of statistics.

2.4. Query Executor and Wrapper

The query plan generated by the optimizer is executed by the query executor. Be-

cause of the high possibility of unanticipated delays and failures in answering queries us-

ing remote data data sources, several adaptive query execution engines such as Tukwila

[IFF+99], Query Scrambling [UFA98, UF00], and Eddies [AH00, MSHR02] have been de-

veloped to provide steady performance by re-optimizing query plans during execution.

Since the integrated data sources may be heterogenous, wrappers are developed for

each of the sources to provide a uniform query interface for the query executor. For each

integrated data source, a wrapper is developed to accept queries from the mediator and

retrieve the answers from the source. Both the queries sent to each wrapper and the an-

swers returned by each wrapper follow a uniform format. Although wrapper generation

could become much easier as the Internet moves towards XML and Web Services, many of

the current data sources still only support HTML. Much research has been done in build-

ing wrappers for online sources. Both supervised machine learning techniques [KWD97,

HD98, BFG01, MMK01] and unsupervised grammar induction techniques [CMM01, HC01,

LKM01] have been proposed to automatically build wrappers. To ensure the wrappers con-

17

tinue to work properly over time, several wrapper maintenance techniques [Kus00, LMK03]

have also been introduced.

CHAPTER 3

MINING COVERAGE AND OVERLAP STATISTICS

In this chapter, we motivate and investigate the issues involved in statistics gathering

in a data integration system.

3.1. Motivation

As we discussed earlier, it’s impractical to learn and store the coverage and overlap

statistics for every possible query a priori. One way of keeping both learning and storage

costs down is to learn statistics only with respect to a smaller set of “frequently asked”

queries that are likely to be most useful in answering user queries. This strategy trades

accuracy of statistics for reduced statistics learning/storing costs. In the BibFinder scenario,

for example, we could learn statistics with respect to the list of queries that are actually

posed to the mediator over a period of time. The motivation for such an approach is

that even if a mediator cannot provide accurate statistics for every possible query, it can

still achieve a reasonable average accuracy by keeping more accurate coverage and overlap

statistics for queries that are asked more frequently, and less accurate statistics for infrequent

queries. The effectiveness of this approach is predicated on the belief that in most real-

world scenarios, the distribution of queries posed to a mediator is not uniform, but rather

19

Figure 3. Keyword distribution in BibFinder user queries

0

100

200

300

400

500

600

700

800

900

20
03

19
98

19
93

19
88

19
83

19
78

19
73

19
68

Year

F
re

q
u

en
cy

Figure 4. Year distribution in BibFinder user queries

Zipfian1. This belief is amply validated in BibFinder. Figure 3 shows the distribution of

the keywords, and bindings for the Year attribute used in the first 15000 queries that were

posed to BibFinder. Figure 3 shows that the most frequently asked 10% keywords appear

in almost 60% of all the selection queries binding attribute Title. Figure 4 shows that the

users are much more interested in recently published papers.
1A distribution of probabilities of occurrence that follows Zipf’s law. According to Zipf’s law, the prob-

ability of occurrence of words or other items starts high and tapers off. Thus, a few occur very often while
many others occur rarely.

20

Handling New Queries through Generalization: Once we subscribe to the idea of

learning statistics with respect to a workload query list, it would seem as if the problem of

statistics gathering is solved. When a new query is encountered, the mediator simply needs

to look into the query list to see the coverage and overlap statistics on this query when

it was last executed. In reality, we still need to address the issue of what to do when we

encounter a query that was not covered by the query list. The key here is “generalization”–

store statistics not with respect to the specific queries in the query list, but rather with

respect to query classes. The query classes will have a general-to-specific partial ordering

among them. This in turn induces a hierarchy among the query classes, with the query

list queries making up the leaf nodes of the hierarchy. The statistics for the general query

classes can then be computed in terms of the statistics of their children classes. When a new

query is encountered that was not part of the workload query list, it can be mapped into

the set of query classes in the hierarchy that are most similar, and the (weighted) statistics

of those query classes can be used to handle the new query. Such an organization of the

statistics offers an important additional flexibility: we can limit the amount of statistics

stored as much as we desire by stripping off (and not storing statistics for) parts of the

query hierarchy.

Modeling Query Classes: The foregoing discussion about query classes raises the issue

regarding the way query classes are defined. For selection queries that bind (a subset of)

attributes to specific values (such as the ones faced by BibFinder), one way is to develop

“general-to-specific” hierarchies over attribute values (AV hierarchies, see below). The

query classes themselves are then naturally defined in terms of (cartesian) products over

the AV hierarchies. Figure 6 shows an example of AV hierarchies and the corresponding

query classes (see Section 3.2 for details). An advantage of defining query classes through

21

the cartesian product of AV hierarchies is that mapping new queries into the query class

hierarchy is straightforward – a selection query binding attributes Ai and Aj will only be

mapped to a query class that binds either one or both of those attributes (to possibly general

values of the attribute).2

Large versus Frequent Query Classes: In the above discussion, we have assumed that

the mediator will maintain a query list. However the query list may not be available for

mediators at their beginning stages. For such cases we introduce a size-based approach to

learning statistics. There we assume that query classes with more answer tuples will be

accessed more frequently, and learn coverage statistics with respect to large query classes.

For example, in the BibFinder scenario, if the number of papers for a conference is large,

we assume the BibFinder users will be more interested in this conference than some small

conferences.3 In the size-based approach, the query list is generated by probing the sources,

and the number of the answer tuples of a query is used as the frequency of the query.
2This also explains why we don’t cluster the query list queries directly–there is no easy way of deciding

which query cluster(s) a new query should be mapped to without actually executing the new query and using
its coverage and overlap statistics to compute the distance between that query and all the query clusters!

3The reason why good conferences usually are large is that they usually exist longer. If a conference has
been held for 30 years, then the number of the papers published by the conference will usually be larger
than that by a conference with only several year history.

22

Figure 5. StatMiner architecture

The approach to statistics learning described and motivated in the foregoing has been

implemented in StatMiner, and has been evaluated in the context of BibFinder. Figure 5

shows the high-level architecture of StatMiner. StatMiner starts with a list of user queries.

The query list can be collected from the log of queries submitted to BibFinder, and not only

gives the specific queries submitted to BibFinder, but also coverage and overlap statistics

on how many tuples for each query came from which source. Initially query lists can also be

generated by probing the integrated sources. The query list is used to learn AV hierarchies,

and to prune query classes that subsume less than a given number of user queries (specified

by a frequency threshold). For each of these remaining classes, class-source as well as class-

source set association rules are learned. An example of a class-source association rule could

be that SIGMOD → DBLP with confidence 100%, which means that the information

23

source DBLP covers all the paper information for SIGMOD related queries.

The rest of the chapter is organized as follows. In the next section, we introduce

our hierarchical query classification model. Section 3.3 describes the methodology used

for extracting and processing training data from autonomous Web sources. Section 3.4

describes the details of learning AV hierarchies. Section 3.5 describes how query classes

are formed. Section 3.6 describes how coverage and overlap statistics are learned for the

query classes that are retained. Section 3.7 describes how a new query is mapped to the

appropriate query classes, and how the combined statistics are used to develop a query

plan. Section 3.8 describes the setting for the experiments we have done with StatMiner

and BibFinder to evaluate the effectiveness of our approach. Section 3.9 presents the ex-

perimental results. Section 3.10 discusses how to learn coverage and overlap statistics for

join queries, and Section 3.11 presents the summary.

3.2. AV Hierarchies and Query Classes

To better illustrate the novel aspects of StatMiner, we purposely limit the queries to

just projection and selection queries. See Section 3.10 for a discussion on how our techniques

can be extended to handle join queries.

AV Hierarchy: As we consider selection queries, we can classify the queries in terms of

the selected attributes and their values. To abstract the classes further we assume that

the mediator has access to the so-called “attribute value hierarchies” for a subset of the

attributes of each mediated relation. An AV hierarchy (or attribute value hierarchy) over

an attribute A is a hierarchical classification of the values of the attribute A. The leaf nodes

of the hierarchy correspond to specific concrete values of A, while the non-leaf nodes are

abstract values that correspond to the union of values below them. Figure 6 shows two very

24

simple AV hierarchies for the “conference” and “year” attributes of the “paper” relation.

Note that the hierarchies do not have to exist for every attribute, but rather only for those

attributes over which queries are classified. We call such attributes the classificatory

attributes. In the dissertation, we assume that the selection of the classificatory attributes

will be done by the mediator designer,4 although it can also be done using automated feature

selection techniques. Similarly, the AV hierarchies themselves can either be hand-coded by

the designer, or can be learned automatically. In Section 3.4, we give details on how we

learn them automatically.

RT,02
 AI,RT

SIGMOD,RT
 ICDE,RT
 DB,02
 AAAI,RT
 AI,01
 ECP,RT

RT,01

SIGMOD01
 ICDE02
ICDE01
 AAAI01

DB,01

ECP01

RT,RT

DB,RT

AI

SIGMOD
 ICDE
 AAAI

RT

2001

ECP

2002

RT

DB

AV Hierarchy for the Conference Attribute
 AV Hierarchy for the Year Attribute

SIGMOD02
 ECP02
 AAAI02

AI,02

Query Class Hierarchy

Figure 6. AV hierarchies and the corresponding query class hierarchy

Query Classes: Since a typical selection query will have values of some set of attributes

bound, we group such queries into query classes using the AV hierarchies of the classificatory

attributes. A query feature is defined as the assignment of a classificatory attribute to a

specific value from its AV hierarchy. A feature is “abstract” if the attribute is assigned
4In scenarios with small number of attributes, we can consider all attributes as classificatory attributes.

For example, in our BibFinder experiments, we consider all four attributes as classificatory attributes and
automatically learn AV hierarchies for them.

25

an abstract (non-leaf) value from its AV hierarchy. Sets of features are used to define

query classes. Specifically, a query class is a set of (selection) queries that all share a

particular set of features. A query class having no abstract features is called a leaf class,

similarly a query having concrete features for all the classificatory attributes is called a leaf

query. The space of query classes is just the cartesian product of the AV hierarchies of

all the classificatory attributes. Specifically, let Hi be the set of features derived from the

AV hierarchy of the ith classificatory attribute. Then the set of all query classes (called

classSet) is simply H1 ×H2 × ... ×Hn. The AV hierarchies induce subsumption relations

among the query classes. A class Ci is subsumed by class Cj if every feature in Ci is equal

to, or a specialization of, the same dimension feature in Cj . A query Q is said to belong to

a class C if the values of the classificatory attributes in Q are equal to, or are specializations

of, the features defining C. Figure 6 shows an example class hierarchy for a very simple

mediator with two example AV hierarchies. The query classes are shown at the bottom,

along with the subsumption relations between the classes.

Query Probability and Class Probability: For scenarios where user query distribution

is available, we use FRQ to denote the access frequency of a query Q, and FR to denote

the total frequency of all the queries in the query list. The query probability of a query Q,

denoted by P (Q), is the probability that a random query posed to the mediator is the query

Q, and is estimated as: P (Q) = FRQ

FR . The class probability of a query class C, denoted by

P (C), is the probability that a random query posed to the mediator is subsumed by the

class C. It is computed as: P (C) =
∑

Q∈C P (Q).

For scenarios where user query distribution is not available, we use the number of answers

of the a query (or a query class) to represent the access frequency of the query (or the query

class). We use NQ to denote the number of answers of a query Q, and N to denote the

26

total number of distinct answers of all the leaf queries which are submitted to BibFinder

as probing queries. The the query probability is estimated as: P (Q) = NQ

N , and the class

probability is estimated as: P (C) =
∑

Q∈C P (Q).5

Coverage and Overlap w.r.t Query Classes: The coverage of a data source S with

respect to a query Q, denoted by P (S|Q), is the probability that a random answer tuple

of query Q is present in source S. The overlap among a set Ŝ of sources with respect to a

query Q, denoted by P (Ŝ|Q), is the probability that a random answer tuple of the query Q

is present in each source S ∈ Ŝ. The overlap (or coverage when Ŝ is a singleton) statistics

w.r.t. a query Q are computed using the following formula

P (Ŝ|Q) =
NQ(Ŝ)

NQ

Here NQ(Ŝ) is the number of answer tuples of Q that are in all sources of Ŝ, NQ is the total

number of answer tuples for Q. We assume that the union of the contents of the available

sources within the system covers 100% of the answers of the query. In other words, coverage

and overlap are measured relative to the available sources.

We also define coverage and overlap with respect to a query class C rather than a

single query Q. The overlap of a source set Ŝ (or coverage when Ŝ is a singleton) w.r.t. a

query class C can be computed using the following formula:

P (Ŝ|C) =
P (C ∩ Ŝ)

P (C)
=

∑
Q∈C P (Ŝ|Q)P (Q)

P (C)

The coverage and overlap statistics w.r.t. a class C is used to estimate the source coverage

and overlap for all the queries that are mapped into C. Here we use the independence
5Note that in the size-based approach we only consider leaf queries within a query class to compute the

statistics of their ancestor classes since the non-leaf queries will only have answers of leaf queries subsumed
by them.

27

assumption: the queries within a query class are asked independently. These statistics can

be conveniently computed using an association rule mining approach as discussed below.

Class-Source Association Rules: A class-source association rule represents strong as-

sociations between a query class and a source set (which is some subset of sources available

to the mediator). Specifically, we are interested in the association rules of the form C → Ŝ,

where C is a query class, and Ŝ is a source set (possibly singleton). The support of the

class C (denoted by P (C)) refers to the class probability of the class C, and the overlap

(or coverage when Ŝ is a singleton) statistic P (Ŝ|C) is simply the confidence of such an as-

sociation rule (denoted by P (Ŝ|C) = P (C∩bS)
P (C)). Examples of such association rules include:

AAAI → S1, AI → S1, AI&2001 → S1 and 2001 → S1 ∧ S2.

3.3. Gathering Base Data

To use the association rule mining approach to learn the coverage and overlap statis-

tics, we need to first collect a representative sample of the data stored in the sources. One

way of getting the sample data is to use a query list to remember the queries submitted by

users and the data distribution over the sources for these queries. In the beginning stages,

however, the mediator may not have a sufficiently large and representative query log. In

such scenarios, another way is to probe the sources with a representative set of probing

queries. In this section, we will first explain the concept of Query List, and then discuss

how to select probing queries to generate an initial query list at the beginning stages of a

mediator.

3.3.1. Query List. We assume that the mediator maintains a query list QList,

which keeps track of the user queries, and for each query saves statistics on how often it

28

is asked and how many of the query answers came from which sources. In Figure 7, we

Query

 Frequency

 |Answers|

 Overlap (Coverage)

DBLP

 35

CSB

 23

CSB, DBLP

 12

DBLP, Science

 3

Science

 3

CSB, DBLP, Science

 1

Author=”andy king”

 106

 46

CSB, Science

 1

CSB

 16

DBLP

 16

CSB
 , DBLP

 7

ACMdl

 5

ACMdl, CSB

 3

ACMdl, DBLP

 3

ACMdl, CSB, DBLP

 2

Author=”fayyad” &

Title=”data mining”

1

 27

Science

 1

Figure 7. A query list fragment

show a query list fragment. The statistics we remember in the query list are: (1) the query

frequency, (2) the total number of distinct answers from all the sources, and (3) the number

of answers from each source set which has answers for that query. The query list is kept as a

XML file which can be stored on the mediator’s hard disk or other separate storage devices.

Only the learned statistics for the frequent query classes will remain in the mediator’s main

memory for fast access.

3.3.2. Probing Queries. There are two possible ways of generating “representa-

tive” probing queries. We could either (1) pick our sample of queries from a set of “spanning

queries”–i.e., queries which together cover all the tuples stored in the data sources or (2)

pick the sample from the set of actual queries that are directed at the mediator over a

period of time. Although the second approach is more sensitive to the actual queries that

are encountered, it has a “chicken-and-egg” problem as no statistics can be learned until

29

the mediator has processed a sufficient number of user queries. For the purposes of the

size-based approach, we shall assume that the probing queries are selected from a set of

spanning queries.

For scenarios where AV hierarchies are available, spanning queries can be gener-

ated by considering a cartesian product of the leaf node features of all the classificatory

attributes (for which AV hierarchies are available), and generating selection queries that

bind attributes using the corresponding values of the members of the cartesian product.

Every member in the cartesian product is a “least general query” that we can generate

using the classificatory attributes and their AV-hierarchies. Given multiple classificatory

attributes, such queries will bind more than one attribute and hence we believe they would

satisfy the “binding restrictions” imposed by most autonomous Web sources. Although a

query binding single classificatory attribute will generate larger result sets, most often such

queries will not satisfy the binding restrictions of Web sources as they are too general and

may extract a large part of the source’s data. The “less general” the query (more attributes

bound), the more likely it will be accepted by autonomous Web sources. But reducing the

generality of the query does entail an increase in the number of spanning queries leading to

larger probing costs if sampling is not done.

For scenarios where AV hierarchies are not available, we need to gather valid binding

values for the attributes in the mediated relation to generate selection queries as spanning

queries. For example, in our BibFinder scenario, we can get author names from CiteSeer

and conference names from DBLP. We also know the values for the year attribute are in

1950-2004.

Once we decide the space from which the probing queries are selected (in our case,

a set of spanning queries), the next question is how to pick a representative sample of

30

these queries. Clearly, sending all potential queries to the sources is too costly. We use

sampling techniques for keeping the number of probing queries under control. Two well-

known sampling techniques are applicable to our scenario: (a) Simple Random Sampling and

(b) Stratified Random Sampling [C77]. Simple random sampling gives equal probability of

being selected to each query in the collection of sample queries. Stratified random sampling

requires that the sample population be divisible into several subgroups. Then for each

subgroup a simple random sampling is done to derive the samples. If the strata are selected

intelligently, stratified sampling gives statistics with higher precision than simple random

sampling. We evaluate both these approaches experimentally to study the effect of sampling

on our learning approach.

Once we decide on a set of sample probing queries, these queries are submitted to

all the data sources. The results returned by the sources are then organized in a query list

(see Section 3.3.1), and the numbers of the answers of the queries are used as the access

frequencies.

3.4. Generating AV Hierarchies Automatically

In this section we discuss how to systematically build AV Hierarchies based on the

query list maintained by the mediator. We first define the distance function between two

attribute values. Next we introduce a clustering algorithm to automatically generate AV

Hierarchies. Then we discuss some complications of the basic clustering algorithm: prepro-

cessing different types of attribute values from the query list and estimating the coverage

and overlap statistics for queries with low selectivity binding values. Finally we discuss how

to flatten our automatically generated AV Hierarchies.

31

Distance Function: The main idea of generating an AV hierarchy is to cluster similar

attribute values into classes in terms of the coverage and overlap statistics of their corre-

sponding selection queries binding these values. The problem of finding similar attribute

values becomes the problem of finding similar selection queries. In order to find similar

queries, we define a distance function to measure the distance between a pair of selection

queries (Q1, Q2):

d(Q1, Q2) =

√∑

i

[P (Ŝi|Q1)− P (Ŝi|Q2)]2

Where Ŝi denotes the ith source set of all possible source sets in the mediator.

Although the number of all possible source sets is exponential in terms of the number of

available sources, we only need to consider source sets with answers for at least one of the

two queries to compute d(Q1, Q2).6 Note that we are not measuring the similarity of the

answers of Q1 and Q2, but rather the similarity of the way their answer tuples are distributed

over the sources. In this sense, we may find that a selection query conference = “AAAI”

and another query conference = “SIGMOD” to be similar in as much as the sources

having tuples for the former also have tuples for the latter. Similarly we define a distance

function to measure the distance between a pair of query classes (C1, C2):

d(C1, C2) =

√∑

i

[P (Ŝi|C1)− P (Ŝi|C2)]2

We compute a query class’s coverage and overlap statistics P (Ŝ|C) according to the defini-

tion of the overlap (or coverage) w.r.t. to a class given in Section 3.2. The statistics P (Ŝ|Q)

for a specific query Q are computed using the statistics from the query list maintained by

the mediator.
6For example, suppose query Q1 gets tuples form only sources S1 and S5, and Q2 gets tuples from S5 and

S7, we will only consider source sets {S1},{S5},{S1, S5},{S7}, and {S5, S7}. We will not consider {S1, S7},
{S1, S5, S7}, {S2}, and many other source sets without any answer for either of the queries.

32

3.4.1. Generating AV Hierarchies. For now we will assume that all attributes

have a discrete set of values, and we will also assume that the corresponding coverage

and overlap statistics are available (see the last two paragraphs in this subsection regard-

ing some important practical considerations). We now introduce GAVH (Generating AV

Hierarchy, see Figure 14), an agglomerative hierarchical clustering algorithm ([HK00]), to

automatically generate an AV Hierarchy for an attribute.

Algorithm GAVH()

for (each attribute value)

generate a cluster node C;

feature vector C.fv = (
−−−−−→
P (bS|Q), P (Q));

children C.children = null;

put cluster node C into AVQueue;

end for

while (AVQueue has more than two clusters)

find the most similar pair of clusters C1 and C2;

/* d(C1, C2) is the minimum of all d(Ci, Cj) */

generate a new cluster C;

C.fv = (P (C1)×
−−−−−→
P (Ŝ|C1)+P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1)+P (C2))
, P (C1) + P (C2));

C.children = (C1, C2);

put cluster C into AVQueue;

remove cluster C1 and C2 from AVQueue;

end while

End GAVH ;

Figure 8. The GAVH algorithm

The GAVH algorithm will build an AV Hierarchy tree, where each node in the tree

has a feature vector summarizing the information that we maintain about an attribute value

cluster. The feature vector is defined as: (
−−−−−→
P (Ŝ|C), P (C)), where

−−−−−→
P (Ŝ|C) is the coverage

and overlap statistics vector of the cluster C for all the source sets and P (C) is the class

probability of the cluster C. Feature vectors are only used during the construction of

AV hierarchies and can be removed afterwards. As we can see from Figure 14, we can

33

incrementally compute a new cluster’s coverage and overlap statistics vector
−−−−−→
P (Ŝ|C) by

using the feature vectors of its children clusters C1, C2:

−−−−−→
P (Ŝ|C) =

P (C1)×
−−−−−→
P (Ŝ|C1) + P (C2)×

−−−−−→
P (Ŝ|C2)

P (C1) + P (C2))

P (C) = P (C1) + P (C2)

Attribute Value Pre-Processing: The attribute values for generating AV hierarchies

are extracted from the query list maintained by the mediator. Since the GAVH algorithm

assumes that all attributes have discrete domains, we may need to preprocess the values

of some types of attributes. For continuous numerical attributes, we divide the domain of

the attribute into small ranges. Each range is treated as a discrete attribute value. For

keyword-based attributes such as the attribute “title” in BibFinder we learn the frequently

asked keyword sets using an item set mining algorithm. Each frequent keyword set will

be treated as a discrete attribute value. Keyword sets that are rarely asked will not be

remembered as attribute values.

Handling Low Selectivity Attribute Values: If an attribute value (i.e. a selection

query binding value) is too general, some sources may only return a subset of answers to

the mediator, while others may not even answer such general queries. In such cases the

mediator will not be able to accurately figure out the number of tuples in these sources,

and thus cannot know the coverage and overlap statistics of these queries to generate AV

hierarchies. To handle this we use the coverage statistics of more specific queries in the

query list to estimate the source coverage and overlap of the original queries. Specifically,

we treat the original general queries as query classes, and to estimate the coverage of the

34

sources for these general queries we use the statistics of the specific queries7 within these

classes using the following formula:

P (Ŝ|C) .=

∑
Q∈C and (Q is specific) P (Ŝ|Q)P (Q)
∑

Q∈C and (Q is specific) P (Q)

As we can see, there is a slight difference between this formula and the formula for

the definition of the overlap (or coverage) w.r.t. to class C. The difference is that here we

only consider the overlap (or coverage) of specific queries within the class.

3.4.2. Flattening AV Hierarchies. Since the nodes of the AV Hierarchies gen-

erated using our GAVH algorithm contain only two children each, we may get a hierarchy

with a large number of layers. One potential problem with such kinds of AV Hierarchies is

that the level of abstraction may not actually increase when we go up the hierarchy. For

example, in Figure 9, assuming the three attribute values have the same coverage and over-

lap statistics, then we should not put them into separate clusters. If we put these attribute

values into two clusters C1 and C2, these two clusters are essentially in the same level of

abstraction. Therefore we may waste our memory space on remembering the same statistics

multiple times.

In order to prune these unnecessary clusters, we use another algorithm called FAVH

(Flattening AV Hierarchy, see Figure 10). FAVH starts the flattening procedure from the

root of the AV Hierarchy, then recursively checks and flattens the entire hierarchy.

To determine whether a cluster Cchild should be preserved in the hierarchy, we com-

pute the tightness of the cluster, which measures the accuracy of its statistics. We consider

a cluster is tight if all the queries subsumed by the cluster (especially frequently asked ones)
7A query in the query list is called a specific query, if the number of answer tuples of the query returned

by each source is less than the source’s limitation.

35

Figure 9. An example of flattening AV hierarchy

Algorithm FAVH(clusterNode C) //Starting from root;

if(C has children)

for (each child node Cchild in C)

put Cchild into Children Queue

for (each node Cchild in Children Queue)

if (d(Cchild, C) <= 1
t(Cchild)

)

put (Cchild).children into Children Queue;

remove Cchild from Children Queue;

end if

for (each children node Cchild in Children Queue)

FAVH(Cchild);

end if

End FAVH ;

Figure 10. The FAVH algorithm

are close to its center. The tightness t(C), of a cluster C, is calculated as following:

t(C) =
1

∑
Q∈C

P (Q)
P (C)d(Q,C)

where d(Q, C) is the distance between the query Q and the center of the cluster.

If the distance, d(Cchild, C), between a cluster and its parent cluster C is not larger

than 1
t(Cchild) , then we consider the cluster as unnecessary and put all of its children directly

into its parent cluster.

36

3.5. Discovering Frequent Query Classes

As we discussed earlier, it may be prohibitively expensive to learn and keep in

memory the coverage and overlap statistics for every possible query class. In order to keep

the amount of statistics low, we would like to prune query classes which are rarely accessed.

In this section we describe how frequently accessed classes are discovered in a two-stage

process.

We use the term candidate frequent class to denote any class with class probability

greater than the minimum frequency threshold minfreq. The example classes shown in

Figure 6 with solid frame lines are candidate frequent classes. As we can see, some queries

may have multiple lowest level ancestor classes which are candidate frequent classes and

are not subsumed by each other. For example, the query (or class) (ICDE,01) has both the

class (DB,01) and class (ICDE,RT) as its parent class. For a query with multiple ancestor

classes, we need to map the query into a set of least-general ancestor classes which are not

subsumed by each other (see Section 3.7). We will combine the statistics of these mapped

classes to estimate the statistics for the query.

We also define the class access probability of a class C, denoted by Pmap(C), to be

the probability that a random query posed to the mediator is actually mapped to the class

C. It is estimated using the following formula:

Pmap(C) =
∑

Q is mapped to C

P (Q)

Since the class access probability of a candidate frequent class will be affected by the

distribution of other candidate frequent classes, in order to identify the classes with high

class access probability, we have to discover all the candidate frequent classes first. In the

next subsection, we will introduce an algorithm to discover candidate frequent classes. In

37

Algorithm DFC(QList; minfreq : minimum support; n : # of classificatory attributes)

classSet = {};
for(k = 1; k <= n; k + +)

Let classSetk = {};
for(each query Q ∈ QList)

CQ = genClassSet(k, Q, ...);

for(each class c ∈ CQ)

if(c /∈ classSetk) classSetk = classSetk ∪ {c};
c.frequency = c.frequency + Q.frequency;

end for

end for

classSetk = {c ∈ classSetk|c.frequency >= minfreq};
classSet = classSet ∪ classSetk;

end for

return classSet;

End DFC ;

Figure 11. The DFC algorithm

Section 3.5.2, we will then discuss how to prune candidate frequent classes with low class

access probability.

3.5.1. Discovering Candidate Frequent Classes. We present an algorithm,

DFC (Discovering Candidate Frequent Classes, see Figure 1), to efficiently discover all the

candidate frequent classes. The DFC algorithm dynamically prunes classes during count-

ing and uses the anti-monotone property8 ([HK00]) to avoid generating classes which are

supersets of the pruned classes.

Specifically the algorithm makes multiple passes over the query list QList. It first

finds all the candidate frequent classes with just one feature, then it finds all the candidate

frequent classes with two features using the previous results and the anti-monotone property

to efficiently prune classes before it starts counting, and so on. The algorithm continues

until it gets all the candidate frequent classes with all the n features (where n is the total
8If a set cannot pass a test, all of its supersets will fail that test as well.

38

Procedure genClassSet(k : number of features;Q : the query; classSet : discovered

frequent class set; AV hierarchies)

for (each feature fi ∈ Q)

ftSeti = {fi};
ftSeti = ftSeti ∪ ({ancestor(fi)} − {root});

end for

candidateSet={};
for (each k feature combination (ftSetj1 , ..., ftSetjk))

tempSet = ftSetj1 ;

for (i = 1; i < k; i + +)

remove any class C /∈ classSeti from tempSet;

tempSet = tempSet× ftSetji+1 ;

end for

remove any class C /∈ classSetk−1 from tempSet;

candidateSet = candidateSet ∪ tempSet;

end for

return candidateSet;

End genClassSet ;

Figure 12. Ancestor class set generation procedure

number of classificatory attributes for which AV-hierarchies have been learned). For each

query Q in the k-th pass, the algorithm finds the set of k feature classes the query falls

in, and for each class C in the set, it increases the class probability P (C) by the query

probability P (Q). The algorithm prunes the classes with class probability less than the

minimum threshold probability minfreq.

The DFC algorithm finds all the candidate ancestor classes with k features for a

query Q = {Ac1 , ..., Acn , frequency} by procedure genClassSet (see Figure 2), where Aci

is the feature value of the ith classificatory attribute. The procedure prunes infrequent

classes using the frequent class set classSet found in the previous (k − 1) passes. In order

to improve the efficiency of the algorithm, it dynamically prunes infrequent classes during

the cartesian product procedure.

Example: Assume we have a query Q={ICDE, 2001, 50} (here 50 is the query frequency)

39

and k = 2. We first extract the feature(binding) values {Ac1 = ICDE,Ac2 = 2001} from

the query. Then for each feature, we generate a feature set which includes all the ancestors

of the feature (see the corresponding AV Hierarchies in Figure 6) . This leads to two

feature sets: ftSet1 = {ICDE, DB} and ftSet2 = {2001}. Suppose the class with the

single feature “ICDE” is not a frequent class in the previous results, then any class with

the feature “ICDE” can not be a frequent class according to the anti-monotone property.

We can prune the feature “ICDE” from ftSet1, then we get the candidate 2-feature class

set for the query Q,

candidateSet = ftSet1 × ftSet2 = {DB&2001}.

3.5.2. Pruning Low Access Probability Classes. The DFC algorithm will dis-

cover all the candidate frequent classes, which unfortunately may include many infrequently

mapped classes. Here we introduce another algorithm, PLC (Pruning Low Access Proba-

bility Classes, see Figure 13), to assign class access probability and delete the classes with

low access probability. The algorithm will scan the query list once, and map each query

into a set of least-general candidate frequent ancestor classes (see Section 3.7). It then

computes the class access probability for each class by counting the total frequencies of all

the queries mapped to the class. The class with the lowest class access probability (less

than minfreq) will be pruned, and the queries of the pruned classes will be re-mapped to

other existing ancestor classes. The pruning process will continue until there is no class

with access probability less than the threshold minfreq.

40

Procedure PLC(QList; classSet: frequent classes from DFC; minfreq)

for (each C ∈ classSet)

initialize FR = 0, and FRC = 0 ;

for(each query Q)

Map Q into a set of least-general classes mSet;

for(each C ∈ mSet)

FRC ← FRC + FRQ;

FR = FR + FRQ;

end for

end for

for(each class C)

class access probability Pmap(C) ← FRC
FR

;

while ((∃C ∈ classSet) Pmap(C) < minfreq)

Delete the class with the smallest class access probability, C′, from classSet;

Re-map the queries which are mapped to C′;

for(new mapped class CnewMapped)

recompute Pmap(CnewMapped);

end while

End PLC ;

Figure 13. The PLC procedure

3.6. Mining Coverage and Overlap Statistics

For each frequent query class in the mediator, we learn coverage and overlap statis-

tics. We use a minimum support threshold minoverlap to prune overlap statistics for

uncorrelated source sets.

A simple way of learning the coverage and overlap statistics is to make a single

pass over the QList, map each query into its ancestor frequent classes (see Section 3.7),

and update the corresponding statistics vectors
−−−−−→
P (Ŝ|C) of its ancestor classes using the

query’s coverage and overlap statistics vector
−−−−−→
P (Ŝ|Q) through the formula

−−−−−→
P (Ŝ|C) =P

Q∈C

−−−−−→
P (Ŝ|Q)×P (Q)

P (C) . When the mapping and updating procedure is completed, we sim-

ply need to prune the overlap statistics which are smaller than the threshold minoverlap.

One potential problem of this naive approach is the possibility of running out of memory,

41

since the system has to remember the coverage and overlap statistics for each source set and

class combination. If the mediator has access to n sources and has discovered m frequent

classes, then the memory requirement for learning these statistics is m × 2n × k, where k

is the number of bytes needed to store a float number. If k = 1, m = 10000, and the total

number of memory available is 1GB, this approach would not scale well when the number

of sources is greater than 16.

In order to handle scenarios with large number of sources, we use a modified Apriori

algorithm [AS94] to avoid considering any supersets of an uncorrelated source set. We first

identify individual sources with coverage statistics greater than minoverlap, and keep cover-

age statistics for these sources. Then we discover all 2-sourceSet 9 with overlap greater than

minoverlap, and keep only overlap statistics for these source sets. This process continues

until we have the overlap statistics for all the correlated source sets.

3.7. Using Learned Coverage and Overlap Statistics

With the learned statistics, the mediator is able to find relevant sources for answering

an incoming query. In order to access the learned statistics efficiently, both the learned AV

hierarchies and the statistics for frequent query classes are loaded into hash tables in the

mediator’s main memory. In this section, we discuss how to use the learned statistics to

estimate the coverage and overlap statistics for a new query, and how these statistics are

used to generate query plans.

3.7.1. Query Mapping. In this section we describe the approach we use to map

a user query into a set of frequent query classes. Given a new query Q, we first get all the
9k-sourceSet denotes the source sets with only k sources.

42

abstract values from the AV hierarchies corresponding to the binding values in Q. Both

the binding values and the abstract values are used to map the query into query classes

with statistics. For each attribute Ai with bindings, we generate a feature set ftSetAi which

includes the corresponding binding value and abstract values for the attribute. The mapped

classes will be a subset of the candidate class set cSet:

cSet = ftSetA1 × ftSetA2 × ...× ftSetAn

where n is the number of attributes with bindings in the query. Let sSet denote all the

frequent classes which have learned statistics and mSet denote all the mapped classes of

query Q. Then the set of mapped classes is:

mSet = cSet− {C|(C ∈ cSet) ∩ (C /∈ sSet)} − {C|(∃C ′ ∈ (sSet ∩ cSet))(C ′ ⊂ C)}

In other words, to obtain the mapped class set we remove all the classes which do not have

any learned statistics as well as the classes which subsume any class with statistics from

the candidate class set. The reason for the latter is because the statistics of the subsumed

class are more specific to the query.

Once we have the relevant class set, we compute the estimated coverage and overlap

statistics vector
−−−−−→
P (Ŝ|Q) for the new query Q using the statistics vectors of the mapped

classes
−−−−−→
P (Ŝ|Ci) and their corresponding tightness information t(Ci).

−−−−−→
P (Ŝ|Q) =

∑

Ci

t(Ci)∑
t(Ci)

−−−−−→
P (Ŝ|Ci)

Since the classes with large tightness values are more likely to provide more accurate

statistics, we give more weight to query classes with large tightness values.

Using Coverage and Overlap Statistics to Generate Query Plans:

43

3.7.2. Computing Residual Coverage. Once we have the coverage and overlap

statistics, we use the Simple Greedy and Greedy Select algorithms described in [FKL97]

to generate query plans. Specifically, Simple Greedy generates plans by greedily selecting

the top k sources ranked only according to their coverage, while Greedy Select selects sources

with high residual coverage calculated using both the coverage and overlap statistics. The

top k source selection using both coverage and overlap statistics is essentially a maximum

coverage problem [H97]. It is well known that a simple greedy algorithm (such as the greedy

select algorithm [FKL97]) solves the maximum coverage problem approximately within a

factor of (1− e−1) of optimum [CFN77]. Feige [F96] proved that no polynomial algorithm

can have better worst-case performance guarantee.

In this section we discuss how we compute the residual coverages. In order to find a

plan with top k sources, we start by selecting the source with the highest coverage [FKL97]

as the first source. We then we use the overlap statistics to compute the residual coverages

of the rest of the sources to find the second best, given the first; the third best, given the

first and second, and so on, until we get a plan with the desired coverage.

In particular, after selecting the first and second best sources S1 and S2 for the class

C, the residual coverage of a third source S3 can be computed as:

P (S3 ∧ ¬S1 ∧ ¬S2|C) = P (S3|C)− P (S3 ∧ S1|C)− P (S3 ∧ S2|C) + P (S3 ∧ S2 ∧ S1|C)

where, P (Si ∧ ¬Sj) is the probability that a random tuple belongs to Si but not to

Sj . In the general case, after we had already selected the best n sources Ŝ = {S1, S2, ..., Sn},

the residual coverage of an additional source S can be expressed as:

P (S ∧ ¬Ŝ|C) = P (S|C) +
n∑

k=1

[(−1)k
∑

bSk⊆bS∧|bSk|=k

P (S ∧ Ŝk|C)]

where P (S ∧ ¬Ŝ|C) is shorthand for P (S ∧ ¬S1 ∧ ¬S2 ∧ ... ∧ ¬Sn|C) .

44

A naive evaluation of this formula would require 2n accesses to the database of

learned statistics, corresponding to the overlap of each possible subset of the n sources with

source S. It is however possible to make this computation more efficient by exploiting the

structure of the stored statistics. Specifically, recall that we only keep overlap statistics for

source sets with sufficient number of overlap tuples, and assume that source sets without

overlap statistics are disjoint (thus their probability of overlap is zero). Furthermore, if

the overlap is zero for a source set Ŝ, we can ignore looking up the overlap statistics for

supersets of Ŝ, since they will all be zero by the anti-monotone property.

To illustrate the above, suppose S1,S2,S3 andS4 are sources exporting tuples for

class C. Let P (S1|C), P (S2|C) P (S3|C) and P (S4|C) be the learned coverage statistics,

and P (S1 ∧ S2|C) and P (S2 ∧ S3|C) be the learned overlap statistics. The expression for

computing the residual coverage of S3 given that S1 and S2 are already selected is:

P (S3 ∧ ¬S1 ∧ ¬S2|C) = P (S3|C)− P (S3 ∧ S1|C)︸ ︷︷ ︸
=0

−P (S3 ∧ S2|C) + P (S3 ∧ S1 ∧ S2|C)︸ ︷︷ ︸
=0 since {S3,S1}⊆{S2,S1,S2}

We note that once we know P (S3 ∧ S1|C) is zero, we can avoid looking up P (S3 ∧

S1 ∧ S2|C), since the latter set is a superset of the former.

In Figure 14, we present an algorithm that uses this structure to evaluate the residual

coverage in an efficient fashion. In particular, this algorithm will cut the number of statistics

lookups from 2n to R+n, where R is the total number of overlap statistics remembered for

class C and n is the total number of sources already selected. This consequent efficiency is

critical in practice since computation of residual coverage forms the inner loop of any query

processing algorithm that considers source coverage.

The inputs to the algorithm in Figure 14 are the source s for which we are going to

compute the residual coverage, and the currently selected set of sources Ŝs. The auxiliary

45

Algorithm residualCoverage (s: source; Ŝs: selected sources;
Ŝc: constraint source set)

n = the number of sources in Ŝs;
if (Ŝc 6= ∅) then p = the position of Ŝc’s last source in Ŝs;
else p=0;
Let resCoverage = 0;
if the overlap statistics for the source set Ŝc ∪ {s}
are present in the learned statistics;

//This means their overlap is > minoverlap.
for (i = p + 1; i ≤ n; i + +)

Let Ŝ′c = Ŝc ∪ {the ith source in Ŝs};
//keep order of sources in Ŝ′c same as in Ŝs

resCoverage = resCoverage+residualCoverage(s, Ŝs, Ŝ
′
c);

end for
resCoverage = resCoverage + (−1)|bSc|overlap;

end if
return resCoverage;

End residualCoverage;

Figure 14. Algorithm for computing residual coverage

datastructure Ŝc, initially set to ∅, is used to restrict the source overlaps considered by the

residualCoverage algorithm. In each invocation, the algorithm first looks for the overlap

statistics for {s}∪ Ŝc. If this statistic is among the learned (stored) statistics, the algorithm

recursively invokes itself on supersets of {s} ∪ Ŝc. Otherwise, the recursion stops in that

branch (eliminating all the redundant superset lookups).

3.8. Experimental Setup

The statistics learning system StatMiner has been fully implemented and evaluated

using both controlled datasets and BibFinder, a popular computer science bibliography

mediator that we developed. In the BibFinder experiments, we show the effectiveness of

our approach in a real scenario, where we can not control the data distribution over these

online Web sources. we evaluated both the frequency-based approach and the size-based

46

approach in BibFinder. In the experiment with controlled datasets, we focused on evaluating

the efficiency and effectiveness of our size-based approach for scenarios with large number

of sources. We will start by describing the experimental setup for both BibFinder and

controlled dataset scenarios.

3.8.1. BibFinder Testbed. We use BibFinder as a testbed to evaluate our ability

to learn an approximate data distribution from real Web data. Both the frequency-based

approach and the size-based approach have been evaluated in BibFinder. In order to eval-

uate the frequency-based approach, we use the real user queries submitted to BibFinder

to observe whether it will work well with real query distributions. In order to evaluate

the effectiveness of the size-based approach over BibFinder, we probe the online sources

integrated by BibFinder to get a initial query list. The focus is to test the effect of var-

ious probing techniques we use. we will explain the detailed experimental setup for both

approaches below.

3.8.1.1. Experimental Setup for Evaluating the Frequency-based Approach. Five

structured Web bibliography data sources in BibFinder are used in our experimental eval-

uation: DBLP, CSB, ACM DL, Science Direct and Network Bibliography. We used the

25000 real queries asked by BibFinder users as of May 20, 2003 as the query list. Among

them, we randomly chose 4500 queries as test queries and the others were used as training

data. The AV Hierarchies for all four attributes were learned automatically using our GAVH

algorithm. The learned Author hierarchy has more than 8000 distinct values,10 the Title

hierarchy keeps only 1200 frequently asked keyword itemsets, the Conference hierarchy has

more than 600 distinct values, and the Year hierarchy has 95 distinct values. Note that
10Since it is too large for GAVH to learn upon it directly, we first group these 8000 values into 2300 value

clusters using a radius based clustering algorithm (O(n) complexity), and use GAVH to generate a hierarchy
for these 2300 value clusters.

47

we consider a range query (for example: “>1990”) as a single distinct value. In Figure 15,

we show a learned attribute value hierarchy for the conference attribute. As we can see,

the hierarchy starts with the HRoot node, followed by the highest level intermediate nodes,

such as qc140, qc396, ..., qc397 and some conferences: “information,processing,letters”11,

“issta”, and, “future,generation,computer,systems”. Since the coverage and overlap statis-

tics of these conferences are very different from those of other conferences, they are put

directly under the root node of the hierarchy. Note that the names of intermediate nodes

are generated automatically by the GAVH algorithm. Naturally the conferences within an

intermediate cluster nodes are only guaranteed to be similar in terms of their coverage and

overlap statistics and may not be similar in terms of their semantic meaning at all. For ex-

ample, the “ieee,computer” journal and the “icml” conference are put into the same cluster

qc350 because they are similar in terms of their coverage and overlap statistics, however

they focus on very different topics.
11Note that commas are used in our implementation to separate the keywords within a conference name.

48

Figure 15. Learned attribute value hierarchy for the conference attribute. Note that only

the last cluster node (i.e. qc397) of the highest level nodes has been unfolded.

3.8.1.2. Experimental Setup for Evaluating the Size-based Approach. Six structured

Web bibliography data sources in BibFinder : DBLP, CSB, ACM DL, ACM Guide, Science

Direct and IEEExplore are used in our experimental evaluation. We chose paper(title,

author, conference/journal, year) as the mediated relation. conference/journal and

year are chosen as the classificatory attributes. Since it’s difficult to get a good AV hierarchy

for the conference/journal attribute, we use the GAVH and FAVH described in Section 3.4

to automatically learn the conference/journal hierarchy. We gathered 604 conference and

journal names from DBLP, ACM dl, and Science Direct Web pages. These names are

used to generate probing queries and to generate AV hierarchy for the conference/journal

49

attribute. The AV hierarchy for the year attribute is consisted of the years from 1954 to

2003 as leaf nodes. Every five years in first level of the hierarchy is subsumed by a second

level ancestor node, and every ten years are subsumed by a third level ancestor node, and

ROOT is the only node in the fourth level. The space of all the probing queries is the

cartisian product of the 604 conference/journal names and the 50 years. We used a set of

578 real queries asked by BibFinder users as the test queries.

Probing Data Sources: To evaluate our size-based approach in BibFinder, we must

probe its mediated sources to estimate the spread of data over them. As discussed ear-

lier, we generate the sample queries by taking cartesian products of the conference/journal

names and recent 50 years. At this time we are assuming that only queries binding both

conference/journal and year will be considered “safe” by the Web sources.

Probing Web sources using all the queries we can generate will be too costly for

large number of queries. Hence we use query sampling to select a smaller set of queries to

generate the required data distribution of sources.

Query Sampling: As mentioned in Section 3.3.2, we generate the set of sample probing

queries using both Simple Random Sampling and Stratified Random Sampling. After gener-

ating the set of spanning queries we use the two sampling approaches to extract a sample set

of queries to probe the data sources. Simple Random sampling picks the samples from the

complete set of queries, whereas to employ the Stratified Random sampling approach, we

have to further classify the queries into various strata. The strata is chosen as the abstract

feature of any one classificatory attribute say A1. All the queries that bind A1 using leaf

values subsumed by a strata are mapped to that strata. A strata based on an abstract

feature that only subsumes leaf nodes will have fewer queries mapped to it compared to the

strata that is based on an abstract feature that subsumes both the leaf nodes and other

50

abstract features. Thus the level of abstraction at which we decide a strata varies the num-

ber of queries that get mapped to the strata. The lowest abstraction is the leaf node, while

the root gives highest abstraction. Selecting root as the strata will make Stratified Random

Sampling equal to Simple Random, where selecting the leaf nodes as strata, will be equal

to issuing all the spanning queries.

3.8.2. Controlled Datasets for Evaluating the Size-based Approach. To

evaluate our size-based approach over controlled data sources, we set up a set of “remote”

data sources accessible on the Internet. The sources were populated with synthetic data

generated using the data generator from TPC-W benchmark [TPC] (see below). The TPC

sources support controlled experimentation as their data distribution (and consequently the

coverage and overlap among web sources) can be varied by us.

We designed 25 sources using 200000 tuples for the relation Books. We chose

Books(Bookid, Pubyear, Subject, Publisher, Cover) as the relation exported by our sources.

The decision to use Books as the sample schema was motivated by the fact that multiple

autonomous Internet sources projecting this relation exist, and in the absence of statistics

about these sources, only naive mediation services are currently provided. Pubyear, Subject

and Cover are used as the classificatory attributes in the relation Books. The hierarchies

were designed as shown in Figures 16 and 17. To evaluate the effect of the resolution of the

hierarchy on ranking accuracy we designed two separate hierarchies for Subject, containing

180 and 40 leaf nodes respectively. Leaf node values for Pubyear range from 1980 to 2001,

while Cover is relatively small with only five leaf nodes. The Subject hierarchy was modeled

from the classification of books given by the online bookstore Amazon [AM]. We populated

the data sources exporting the mediator relation using DataGen, the data generator from

51

TPC-W Benchmark [TPC]. The distribution of data in these sources was determined by

controlling the values used to instantiate the classificatory attributes Pubyear, Subject and

Cover. For example, two sources S1 and S2 both providing tuples under abstract feature

“Databases” of Subject hierarchy, are designed to have varying overlap with source S3, by

selecting different subsets of features under “Databases” to instantiate the source tuples.

These subsets may be mutually exclusive, but they overlap with the subset of features se-

lected for populating source S3. Since the actual generation of data sources is done by using

DataGen, the above mentioned procedure gives us a macro level control over the design of

overlap among sources. In fact DataGen populates the sources by initializing each attribute

of the Books relation using a randomly chosen value from a list of seed values for that

attribute. Hence we control the query classes for which the sources provide answer tuples

and may overlap with other sources but not the actual values of coverage and overlap given

by sources.

Java

Cell

Biology
Stocks

SUBJECT

Computers

Internet

Business

Finance

Life Science

Programming
 Databases
 Marketing
 Investing

Biology

C++
 ORDBMS

......

RDBMS

......

.....

..........

.......

....

....

Sales
 Service
 Bonds
 Genetics

.....

Zoology

...

Ecology

.....

Marine

Biology

.....

Figure 16. Subject hierarchy

3.8.3. Algorithms and Evaluation Metrics. To evaluate the accuracy of the

statistics learnt by StatMiner we tested them using two simple plan generation algorithms.

Our mediator implements the Simple Greedy and Greedy Select algorithms described

in [FKL97] to generate query plans using the source coverage and overlap statistics learnt

52

Cover

Hardcopy
 Audio-video

Paperback
 Audio
 Video
Hardcover

Limited-

edition

Year

1970-1975

1970

.......

1975

1985-1990

1985
 1990

.......

.......

1995-2001

1995
 2001

.......

.......

Figure 17. Cover and year hierarchy

by StatMiner. Given a query, Simple Greedy generates a plan by assuming all sources are

independent and greedily selects top k sources ranked according to their coverages. On the

other hand, Greedy Select generates query plans by selecting sources with high residual

coverages calculated using both the coverage and overlap statistics (see Section 3.7.2).

We evaluate the plans generated by both the planners for various sets of statistics

learnt by StatMiner for differing threshold values and AV hierarchies. We compare the

precision of plans generated by both the algorithms. We define the plan precision to be the

fraction of sources in the estimated plan, which turn out to be the real top k sources after

we execute the query. Let TopK refer to the real top k sources, and Selected(p) refer to

the k sources selected in the plan p. Then the precision of the plan p is:

precision(p) =
|TopK ∩ Selected(p)|

|Selected(p)|

The average precision and number of answers returned by executing the plan are used to

estimate the accuracy of the learned statistics.

We also measure the absolute error between the estimated statistics and the real

coverage and overlap values. The absolute error is computed using the following formula:

∑
Q∈TestQuerySet

√∑
i[P ′(Ŝi|Q)− P (Ŝi|Q)]2

|TestQuerySet|

where Ŝi denotes the ith source set of all possible source sets in the mediator, P ′(Ŝi|Q)

denotes the estimated overlap (or coverage) of the source set Ŝi for query Q, P (Ŝi|Q)

53

denotes the real overlap (or coverage) of the source set Ŝi for query Q, and TestQuerySet

refers to the set of all test queries.

3.9. Experimental Results

We now present the results of both experiments using BibFinder as testbed, and

experiments using controlled datasets.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.
03

0.
13

0.
23

0.
33

0.
43

0.
53

0.
63

0.
73

minfreq(%)

nu
m

be
r

of
 c

la
ss

es

Figure 18. The total number of classes learned

54

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq(%)

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

b
yt

es
)

minoverlap=0

minoverlap=0.1

minoverlap=0.2

minoverlap=0.3

Figure 19. The total amount of memory needed for keeping the learned statistics in

BibFinder

0

0.1

0.2

0.3

0.4

0.5

0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq(%)

A
ve

ra
g

e
E

rr
o

r

minoverlap=0

minoverlap=0.1

minoverlap=0.2

minoverlap=0.3

Figure 20. The average distance between the estimated statistics and the real coverage and

overlap values.

55

28

33

38

43

48

53

0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq(%)

N
u

m
b

er
 o

f
d

is
ti

n
ct

 a
n

sw
er

s

RS

SG0

GS0

SG0.3

GS0.3

Figure 21. The average number of answers BibFinder returns by executing the query plans

with top 2 sources.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq(%)

p
re

ci
si

o
n

 RS

SG0

GS0

SG0.3

GS0.3

Figure 22. Precision for query plans with top 2 sources.

56

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.03
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq (%)

P
re

ci
si

o
n

 RS

SG0

GS0

SG0.3

GS0.3

Figure 23. Precision for query plans with top 3 sources.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.003
 0.13
 0.23
 0.33
 0.43
 0.53
 0.63
 0.73

minfreq (%)

P
ro

b
ab

ili
ty

 o
f

ir
re

le
va

n
t

so
u

rc
e-

ca
ll

RS

SG

Figure 24. The percent of the total source-calls that are irrelevant for query plans with top

1 sources.

3.9.1. Results of Evaluating Frequency-based Approach over BibFinder.

Space Consumption for Different minfreq and minoverlap Thresholds: In Fig-

ures 18 and 19, we observe the reduction in space consumption and number of classes

when we increase the minfreq and minoverlap thresholds. Slightly increasing the minfreq

threshold from 0.03% to 0.13% causes the number of classes to drop dramatically from

57

approximately 10000 classes to 3000. As we increase the minfreq threshold, the number

of classes decreases, however the decrease rate becomes smaller as the threshold becomes

larger. In Figure 19, we observe the size of the required memory for different levels of

abstraction of the statistics. Clearly, as we increase any of these two thresholds the space

consumption drops, however the pruning power also drops simultaneously.12

Accuracy of the Learned Statistics for Different minfreq and minoverlap Thresh-

olds: Figure 20 plots the absolute error of the learned statistics for the 4500 test queries.

The graph illustrates that although the error increases as any of these two thresholds

increase, the increase rates remain almost the same. There is no dramatic increase af-

ter the initial increases of the thresholds. If we looked at both Figures 19 and 20 to-

gether, we can see that the absolute error of threshold combination: minfreq = 0.13% and

minoverlap = 0.1 is almost the same as that of minfreq = 0.33% and minoverlap = 0,

while the former uses only 50% of the memory required by the latter. This fact tells us

that keeping very detailed overlap statistics of uncorrelated source sets for general query

classes would not necessarily increase the accuracy of our statistics while requiring much

more space.

Effectiveness of the Learned Statistics: We evaluate the effectiveness of the learned

statistics by actually testing these statistics in BibFinder and observing the precision of the

query plans and the number of distinct answers returned from the Web sources when we

execute these plans to answer user queries.

Note that in all the figures described below, RS refers to Random Select algo-
12Note that for a better readability of our plots, we did not include the number of classes and memory

consumption when the minfreq threshold is equal to zero, as the corresponding values were much larger than
those obtained for other threshold combinations. In fact, the total number of classes when the minfreq is
equal to zero is about 540000, and the memory requirement when both minfreq and minoverlap are equal
to zero is about 40MB. Although in our current experiment setting 40MB is the maximal memory space
needed to keep the statistics (mainly because BibFinder is at its beginning stage), the required memory
could become much larger as the number of users and the number of integrated sources grow.

58

rithm, SG0 refers to Simple Greedy algorithm with minoverlap = 0, GS0 refers to Greedy

Select algorithm with minoverlap = 0, SG0.3 refers to Simple Greedy algorithm with

minoverlap = 0.3, and GS0.3 refers to Greedy Select algorithm with minoverlap = 0.3.

In Figure 21, we observe how the minfreq and minoverlap thresholds influence the

average number of distinct answers returned by BibFinder for the 4500 test queries when

executing query plans with top 2 sources. As indicated by the graph, for all the threshold

combinations, we always get on average more than 50 distinct answers when using our

learned statistics and query plans selected by Simple Greedy and Greedy Select, while we

can only get about 30 distinct answers by randomly selecting 2 sources. In Figures 22 and

23, we observe the average precision of the top 2 and top 3 sources ranked using statistics

with different level of abstraction for the test queries. As we can see, the plans using our

learned statistics have high precision, and their precision decreases very slowly as we change

the minfreq and minoverlap thresholds.

One fact we need to point out is that the precision of the plans using Simple Greedy

and Greedy Select algorithm are very close (although Greedy Select is a little better most of

the time). This is not as we expected, since the Simple Greedy only uses the coverage statis-

tics, while Greedy Select uses both coverage and overlap statistics. When we studied many

queries asked by the BibFinder users and the corresponding coverage and overlap statistics,

we found that the distribution of answer tuples over sources integrated by BibFinder al-

most follow independence assumption for most of the queries asked by the users. However

in other scenarios Greedy Select can perform considerably better than Simple Greedy. For

instance, in our experiment with a controlled data set, where we set 25 artificial sources

including some highly correlated sources, we did find that the plans generated by Greedy

Select were significantly better than those generated by Simple Greedy.

59

Figure 24 shows the possibility of a source call being a completely irrelevant source

call (i.e. the source has no answer for the query asked). The graph reveals that the most

relevant source selected using our algorithm has only 12% possibility of being an irrelevant

source call, while the randomly picked source has about 46% possibility. This illustrates

that by using our statistics BibFinder can significantly reduce the unnecessary load on its

integrated sources.

Efficiency Issues: We now discuss the time needed for learning and using the coverage

and overlap statistics. All our experiments were run under JDK 1.2.2 on a 500MHZ SUN-

Blade-100 with 768Mb of RAM. From the experiments, we found that using the learned

statistics to generate query plans for a new query is very fast, specifically always less than

1 millisecond. In terms of the statistics learning, costs associated with discovering frequent

query classes and learning statistics are also fairly inexpensive (i.e. always less than 100

seconds). Our experiments with 25 artificial sources (see 3.9.3) also shows that our statistics

learning algorithms can scale well. The most expensive phase is learning the AV Hierarchies.

During the experiments we found that the GAVH algorithm can be very time-consuming

when the number of attribute values is large. Specifically, it takes us 719ms to learn the

Year hierarchy, 1 minute to learn the Conference hierarchy, 25 minutes to learn the Title

keywords hierarchy, and 2.5 hours to learn the Author hierarchy. However since GAVH

runs offline and only needs to run once, it still is not a major drawback. Since it is the

most time consuming phase, we can consider incrementally updating the hierarchy as new

queries come in.

3.9.2. Results of Evaluating the Size-based Approach over BibFinder.

Given that the cost of probing tends to dominate the statistics gathering approach, we

60

wanted to see how accurate the learned statistics are with respect to the two probing strate-

gies. We used BibFinder sources for evaluating the probing strategies. The set of probing

queries are generated by taking a cartesian product of the values of the conference/journal

attribute and year attribute. The total number of queries generated is 30200. In order to

be polite to the Web sources, we probe them at the rate of 3 queries per minute.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
 0.05
 0.1
 0.15
 0.2

Percentage of Probing Queries (%)

P
re

ci
si

o
n

 Stratified
 NoStat
 Random

0.2 1 2
 10
 20

Figure 25. Comparing average precision of query plans for top 3 sources obtained using

statistics through different probing strategies

61

0

10

20

30

40

50

60

70

0.2
 1
 2
 10
 20

Percentage of Probing Queries (%)

N
u

m
b

er
 o

f
A

n
sw

er
s

Stratified
 Random
 NoStat

Figure 26. Comparing average number of answers returned by BibFinder by executing

query plans for top 3 sources obtained using statistics through different probing strategies

In the experiment we study the efficiency of different probing strategies and different

number of probing queries by observing the effectiveness of the learned statistics through

their probing results.

For each of these two probing strategies, we generate five sets of probing queries with

different number of probing queries: 60 (0.2%), 302(1%), 604(2%), 3020(10%), 6040(20%).

Specifically in the stratified sampling, the first set of 60 probing queries is generated by

randomly selecting 60 conference/journal names without replacement and for each name

randomly selecting a year from the 50 years; the second set of 302 queries is generated by

randomly selecting 60 conference/journal names and for each names selecting 5 years (one

from year ten year period); the third set of 602 queries is generated by selecting all names

and for each names randomly selecting a year; the fourth set of 3020 queries is generated

by selecting all names and for each names selecting 5 years (one year from each 10 year

period); the fifth set of 6040 queries is generated by selecting all names, and for each name

62

selecting 10 years (one year from each 5 year period). In the random sampling strategies,

we generate the sets of queries by randomly selecting 60, 302, 604, 3020, and 6040 queries

from all the 30200 queries.

We now describe the steps in the experimental procedure:

1. For each of the probing strategies and for each set of probing queries, we probe all

the six online sources;

2. Generate conference/journal hierarchies using the probing results;

3. Discover large query classes using the learned conference/journal hierarchy and the

year hierarchy using the probing results;

4. Learn coverage and overlap statistics for each discovered large classes using the probing

results

5. Use a list of 578 real user queries submitted to BibFinder to evaluate the learned

statistics.

In Figure 25, we observe the average precision of query plans for top 3 sources

for different sampling strategies and different number of probing queries. Here we fix the

thresholds minfreq = 0.1% and minoverlap = 1%. The query plans are generated by

the greedy select algorithm using the learned coverage and overlap statistics. Different

probing strategies and different number of probing queries affect the precision of the learned

statistics, which affect the plan precision. From the figure, we can see that the stratified

sampling is doing better than random sampling when the number of probing queries is

small and the selection of strata is good, especially for the set of 302 probing queries. For

each conference/journal, probing five years in each ten year period is much better than for

63

each conference/journal randomly probing one year in a fifty year period. This is because

the large classes discovered using 5 year probing results are more likely to be important

conferences/journals than those using one year probing results. Learning the distribution

over the sources for important conferences/journal will improve the precision, since users

are more interested in these conferences/journals and the statistics for these conferences are

more representative than that of random conferences/journals. However as the number of

probing queries increases, the difference between random and stratified sampling becomes

smaller (as to be expected).

In Figure 26, we observe the average number of answers from BibFinder when exe-

cuting query plans for 3 sources for the 578 user queries. The figure illustrates results for

different probing strategies and different number of probing queries. As we can see, the re-

sult is quite consistent with the plan precision. It is interesting to note that when using the

statistics learned from the stratified probing results of 302 queries, BibFinder can actually

provide about 50% more answers than by randomly querying 3 sources without using any

statistics.

The above results are encouraging and show that our approach of leaning and using

coverage and overlap statistics in BibFinder is able to give good results even for a very

small sample of all probing queries. They also show that the stratified sampling is doing

much better than random sampling when a good stratification strategy is chosen, and the

number of probing queries is relatively small.

3.9.3. Results of Evaluating the Size-based Approach over Controlled

Data Sources. Now we present results of experiments conducted to study the variation in

pruning power, the efficiency and the accuracy of StatMiner in the controlled experiment.

64

In particular, given a set of sources and probing queries, our aim is to show that we can

trade time and space for accuracy by increasing the threshold minfreq. Specifically by

increasing threshold minfreq, the time (to identify large classes) and space (number of

large classes remembered) usage can be reduced with a reduction in accuracy of the learnt

estimates. All the experiments presented here were conducted on a 500MHZ Sun-Blade-100

systems with 256MB main memory running under Solaris 5.8. The sources in the mediator

are hosted on a Sun Ultra 5 Web server located on campus.

Effect of Hierarchies on Space and Time: To evaluate the performance of our statistics

learner, we varied minfreq and measured the number of large classes and the time utilized

for learning source coverage statistics for these large classes. Figure 27 compares the time

taken by StatMiner to learn rules for different values of minfreq. Figure 28 compares the

number of pruned classes with increase in value of minfreq. We represent minfreq as a

percentage of the total number of tuples in the relation. The total tuples in the relation is

calculated as the number of unique tuples generated by the probing queries.

As can be seen from Figure 27, for lower values of threshold minfreq, StatMiner

takes more time to learn the rules. For lower values of minfreq, StatMiner will prune less

number of classes and hence for each class, StatMinerwill generate large number of rules.

This in turn explains the increase in learning time for lower threshold values.

65

0
 0.25
 0.5
 0.75
 1
 1.25
 1.5
 1.75
 2
 2.25

0

500

1000

1500

2000

2500

3000

T
im

e(
se

c)

Threshold(%)

Small Hierarchy

Large Hierarchy

Figure 27. StatMiner learning time for various thresholds

0
 0.25
 0.5
 0.75
 1
 1.25
 1.5
 1.75
 2
 2.25

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

L
ar

g
eC

la
ss

es

Threshold(%)

Small Hierarchy

LargeHierarchy

Figure 28. Pruning of classes by StatMiner

66

0

50

100

150

200

250

300

350

0
 0.25
 0.5
 0.75
 1
 1.25
 1.5
 1.75
 2
 2.25

Threshold(%)

n
u

m
b

er
 o

f
d

is
ti

n
ct

 t
u

p
le

s

Greedy Select

Simple Select

Random Select

Figure 29. Comparing average number of answers by executing query plans for top 5 sources

obtained by different planning algorithms using learned statistics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.25
 0.5
 0.75
 1
 1.25
 1.5
 1.75
 2
 2.25

Threshold(%)

P
re

ci
si

o
n

Greedy Select
 Simple Greedy
 Random Select

Figure 30. Comparing average precision of query plans for top 5 sources obtained by different

planning algorithms using learned statistics

In Figure 28, with increase in value of minfreq, the number of small classes pruned

increase and hence we see a reduction in the number of large classes. For any value of

minfreq greater than the support of the largest abstract class in the classSet, StatMiner

returns only the root as the class to remember. Figures 27 and 28 show StatMiner

performing uniformly for both Small and Large hierarchy. For both hierarchies, StatMiner

67

generates large number of classes for small threshold values and requires more learning time.

From Figures 27 and 28, we can see that the amount of time used and classes generated

(space requirement) for the Large hierarchy is considerably higher than for Small hierarchy.

Accuracy of Estimated Coverages: To calculate the error in our coverage estimates, we

used the prototype implementations of “Simple Greedy” and “Greedy Select” algorithms

and a subset of our spanning queries as test queries. Since the test queries will have

classificatory attributes bound, from Section 3.7 we see that the mediator maps them to

the lowest abstract classes for which coverage statistics have been learnt. Once the query is

mapped to a class, the mediator then generates plans using the ranking algorithms, Simple

Greedy and Greedy Select as described in Section 3.8.3. We compare the plans generated by

these algorithms with a naive plan generated by Random Select. Random select algorithm

arbitrarily picks k sources without using any statistics. The source rankings generated by

all the three algorithms is compared with the “true ranking” determined by querying all

the sources. Figure 30 compares the precision of plans generated by the three approaches

with respect to the true ranking of the sources.

As can be seen from Figure 29 for all values of minfreq Greedy Select gives the best

plan, while Simple Greedy is close second, but the Random Select performs poorly. The

results are according to our expectations, since Greedy Select generates plans by calculating

residual coverage of sources and thereby takes into account the amount of overlap among

sources, while Simple Greedy calls sources with high coverages thereby ignoring the overlap

statistics and hence generates less number of tuples.

In Figure 30 we compare the precision of plans generated by the three approaches.

We define the precision of a plan to be the fraction of sources in the estimated plan, which

turn out to be the real top k sources after we execute the query. Figure 30 shows the

68

precision for the top 5 sources in a plan. Again we can see that Greedy Select comes out

the winner. The decrease in precision of plans generated for higher values of threshold can

be explained from Figure 28. As can be seen, for larger values of threshold more number

of leaf classes get pruned. A mediator query always maps to a particular leaf class. But for

higher thresholds, the leaf classes are pruned and hence queries get mapped to higher level

abstract classes. Therefore the statistics used to generate plans have lower accuracy and in

turn generate plans with lower precision.

Altogether the experiments on these controlled datasets show that StatMiner uses

the association mining based approach effectively to control the number of statistics required

for data integration. An ideal threshold for a mediator relation would depend on the number

and size of AV hierarchies. For our sample Books mediator, an ideal threshold for StatMiner

would be around 0.75%, for both the hierarchies, where StatMiner effectively prunes a large

number of small classes and yet the precision of plans generated is fairly high. We also

bring forth the problems involved in trying to scale up the algorithm to larger hierarchies.

3.10. Discussion

In the previous sections of this chapter, we focussed on learning coverage and overlap

statistics of selection and projection queries. The techniques described for selection queries

can however be extended to join queries. In this section, we first define the concept of

coverage and overlap statistics with respect to join queries, then we discuss how we can

discover frequent query classes of join queries, and learn statistics for these classes.

For a join query Q : −R1, R2, ..., Rn and a subgoal relation Ri in Q, we use Q ∩ Ri

to denote the set of tuples from the subgoal Ri that appear in the final answer tuple set

after joining with all other subgoals in Q. The coverage of a data source S with respect

69

to Q and Ri, denoted by P (S|Q ∩ Ri), is the probability that a random tuple of Q ∩ Ri

is present in source S. The overlap among a set Ŝ of sources with respect to Q and Ri,

denoted by P (Ŝ|Q∩Ri), is the probability that a random tuple of Q∩Ri is present in each

source S ∈ Ŝ. The overlap statistics (or coverage when Ŝ is a singleton) w.r.t. Q and Ri

are computed using the following formula

P (Ŝ|Q ∩Ri) =
NQ∩Ri(Ŝ)

NQ∩Ri

Here NQ∩Ri(Ŝ) is the number of tuples in Q ∩Ri that are in all sources of Ŝ, NQ∩Ri is the

total number of tuples in Q∩Ri. we assume that the union of the contents of the available

sources within the system covers 100% of all the subgoal relations. In other words, coverage

and overlap are measured relative to the available sources.

We also define coverage and overlap with respect to a query class, C, of join queries

and subgoal relation Ri rather than a single join query Q. The overlap of a source set Ŝ

(or coverage when Ŝ is a singleton) w.r.t. a query class C and subgoal relation Ri can be

computed using the following formula:

P (Ŝ|C ∩Ri) =

∑
Q∈C P (Ŝ|Q ∩Ri)P (Q)

P (C)

The coverage and overlap statistics w.r.t. a class C are eventually used to estimate the

source coverage and overlap for all the queries that are mapped into C.

We classify all join queries with the same subgoal relations into a join query class.

All the subgoal relations of the queries within a join query classes are considered as a single

relation. For example, consider the following three queries Q1, Q2, and Q3:

Q1 : −R1(A1, A2), R2(A2, A3), A1 = a

Q2 : −R1(A1, A2), R2(A2, A3), A3 = c

Q3 : −R1(A1, A2), R2(A2, A3), A1 = b, A3 = d

70

Since they all have the same subgoal relations:R1(A1, A2) and R2(A2, A3), we can classify

them into the same join query class. we use a single relation R(A1, A2, A3) to denote the

join of R1(A1, A2) and R2(A2, A3), then Q1, Q2, and Q3 can be rewritten as:

Q1 : −R(A1, A2, A3), A1 = a

Q2 : −R(A1, A2, A3), A3 = c

Q3 : −R(A1, A2, A3), A1 = b, A3 = d

As we can see these queries becomes selection queries over the new relation R(A1, A2, A3).

After we rewrite the queries within a join query class into selection queries, we can

classify these queries based on their bound values and use similar techniques for selection

queries to learn statistics for frequent query classes within the join query class13.

We now discuss how to compute the coverage and overlap statistics of the discovered

frequent classes within a join query class. Specifically, all the coverage and overlap statistics,

P (Ŝ|Q ∩Ri), of user queries will be computed and recorded in the query list the first time

the queries are asked by users. After the frequent query classes are discovered, the statistics

of each frequent class will be learned in the same way as for learning statistics for selection

query classes.

3.11. Summary

In this chapter we motivated the need for automatically mining the coverage and

overlap statistics of sources w.r.t. frequently accessed query classes for efficient query pro-

cessing in a data integration scenario. We then presented a set of connected techniques that

automatically generate attribute value hierarchies, efficiently discover frequent query classes
13If the join query class itself is not frequent enough, statistics for this class will not be learned. Instead,

the statistics of each of the subgoal relations in the join queries within the class will be used to estimate
their statistics.

71

and learn coverage and overlap statistics for only these frequent classes. We described the

algorithmic details and implementation of our approach. We also presented an empirical

evaluation of the effectiveness of our approach in the bibliography mediator BibFinder. Our

experiments demonstrate that (i) We can systematically trade the statistics learning time

and number of statistics remembered for accuracy by varying the frequent class thresholds.

(ii) The learned statistics provide tangible improvements in the source ranking, and the

improvement is proportional to the granularity of the learned statistics.

CHAPTER 4

JOINT OPTIMIZATION OF COVERAGE AND COST

WITH MULTI-R

As we mentioned earlier, selecting high-quality plans in data integration requires the

ability to consider the coverages offered by various sources, and form a query plan with the

combination of sources that is estimated to be a high-quality plan given the cost-coverage

tradeoffs of the user. In this chapter, we describe how Multi-R effectively uses the coverage

and overlap statistics learned by StatMiner, and does joint optimization of coverage and

cost of query plans in data integration.

The rest of the chapter is organized as follows. Section 4.1 uses a simple example

to provide a brief survey of existing work on query optimization in data integration, as

well as to motivate the need for our joint optimization approach. Section 4.2 discusses the

syntax and semantics of the parallel query plans, the models for estimating the cost and

coverage of parallel plans, and the specific methodology we use to combine cost and coverage

into an aggregate utility metric. Section 4.3 describes two algorithms to generate parallel

query plans and analyzes their complexity. Section 4.4 presents a comprehensive empirical

evaluation which demonstrates that Multi-R can offer high utility plans (in terms of cost

and coverage) for a fraction of the planning cost incurred by the existing approaches that

73

Sources Relations Coverage Cost Must bind attributes

S11 book 70% 300 ISBN or title

S12 book 50% 200 ISBN or title

S13 book 60% 600 ISBN

S21 price-of 75% 300 ISBN or retail-price

S22 price-of 70% 260 ISBN or retail-price

S31 review-of 70% 300 ISBN

S32 review-of 50% 400 reviewer

Table 1. Statistics for the sources in the example system

use phased optimization with linear plans.

4.1. Motivation

Consider a simple mediator that integrates several sources that export informa-

tion about books. Suppose there are three relations in the global schema of this system:

book(ISBN, title, author), price-of(ISBN, retail-price), review-of(ISBN, reviewer, re-

view). Suppose the system can access three sources: S11, S12, S13, each of which contain

tuples for the book relation, two sources S21, S22 each of which contain tuples for the

price-of relation, and two sources S31, S32 each of which contain tuples for the review-of

relation. Individual sources differ in the amount of coverage they offer on the relation they

export. Table 1 lists some representative statistics for these sources. We will assume that

the coverage is measured in terms of the fraction of tuples of the relation in the global

schema which are stored in the source relation, and cost is specified in terms of the average

response time for a single source call. The last column lists the attributes that must be

bound in each call to the source. To simplify matters, let us assume that the sources are

“independent” in their coverage (in that the probability that a tuple is present in a given

source is independent of the probability that the same tuple is present in another source).

Consider the example query:

74

Q(title,retail-price,review) : −book(ISBN, title, author),

price-of(ISBN, retail-price),

review-of(ISBN, reviewer, review),

title=“Data Warehousing”, retail-price<$40.

In the following, we briefly discuss the limitations of existing approaches in optimizing this

query, and motivate our approach.

Bucket Algorithm [LRO96]: The bucket algorithm by Levy et al. [LRO96] will generate

three buckets, each containing the sources relevant to one of the three subgoals in the query:

Bucket B(for book): S11, S12, S13

Bucket P(for price-of): S21, S22

Bucket R(for review-of): S31, S32

Once the buckets are generated, the algorithm will enumerate 12 possible plans (= 3×2×2)

corresponding to the selection of one source from each bucket. For each combination, the

correctness of the plan is checked (using containment checks), and executable orderings for

each plan are computed. Note that the 6 plans that include the source S32 are not going to

lead to any executable orderings since there is no way of binding the “reviewer” attribute

as the input to the source query. Consequently, the set of plans output by the bucket

algorithms are:

p1 = (Sfbf
11 ./ Sbf

21) ./ Sbff
31 ,

p2 = (Sfbf
11 ./ Sbf

22) ./ Sbff
31 ,

p3 = (Sfbf
12 ./ Sbf

21) ./ Sbff
31 ,

p4 = (Sfbf
12 ./ Sbf

22) ./ Sbff
31 ,

p5 = (Sfb
21 ./ Sbff

13) ./ Sbff
31 ,

p6 = (Sfb
22 ./ Sbff

13) ./ Sbff
31

75

where, the superscripts “f” and “b” are used to specify which attributes are bound in each

source call. We call these plans “linear plans” in the sense that they contain at most one

source for each of the relations mentioned in the query. Once the feasible logical plans

are enumerated, the approach in [LRO96] consists of finding “feasible” execution orders for

each of the logical plans, and executing all the plans. While this approach is guaranteed

to give maximal coverage, it is often prohibitively expensive in terms of both planning and

execution cost. In particular, for a query with n subgoals, and a scenario where there are

at most m sources in the bucket of any subgoal, the worst case complexity of this approach

(in terms of planning time) is O(mnn2), as there can be mn distinct linear plans, and the

cost of finding a feasible order for them using the approach in [LRO96] is O(n2).

Executing top N Plans: More recent work [FKL97; NLF99; DH02] tried to make-up for

the prohibitive execution cost of the enumeration strategy used in [LRO96] by first ranking

the enumerated plans in the order of their coverage (or more broadly “quality”), and then

executing the top N plans, for some arbitrarily chosen N. The idea is to identify the specific

plans that are likely to have high coverage and execute those first.

In our example, these procedures might rank p1 = (Sfbf
11 ./ Sbf

21) ./ Sbff
31 as the best

plan (since all of the sources have the highest coverage among sources in their buckets),

and then rank p6 = (Sfb
22 ./ Sbff

13) ./ Sbff
31 , as the second best plan as it contains the sources

with highest coverages after executing the best plan p1.

The problem with this type of approach is that the plans that are ranked highest in

terms of coverage may not necessarily provide the best tradeoffs in terms of execution cost.

In our example, suppose source S22 stores 1000 tuples with attribute value retail-price less

than $40, then in plan p6 we have to query S13, the costliest among the accessible sources, a

thousand times because of its binding pattern restriction. The total cost of this plan will thus

76

be more than 6× 105. In contrast, a lower ranked plan such as p4 (= (Sfbf
12 ./ Sbf

22) ./ Sbff
31)

may cost significantly less, while offering coverage that is competitive with that offered

by p6. For example, assuming that source S12 maintains 10 independent ISBN values for

title=“Data Warehousing”, the cost of p4 may be less than 5800. In such a scenario, most

users may prefer executing the plan p4 first instead of p6 to avoid incurring the high cost

of executing plan p6.

The lesson from the example above is that if we want to get a plan that can produce

higher quality results with limited cost, it is critical to consider execution costs while doing

source selection (rather than after the fact). In order to take the cost information into

account, we have to consider the source-call ordering during planning, since different source-

call orders will result in different execution costs for the same logical plan. In other words,

we have to jointly optimize source-call ordering and source selection to get good query

plans.

The Need for Parallel Plans: Once we recognize that the cost and coverage need to be

taken into account together, we argue that it is better to organize the query planning in

terms of “which sources should be called for supporting each subgoal” rather than in terms

of “which linear plans have the highest cost/quality tradeoffs.” To this end, we introduce

the notion of a “parallel” plan, which is essentially a sequence of source sets. Each source

set corresponds to a subgoal of the query, such that the sources in that set export that

subgoal (relation). The sources in individual source sets can be accessed in parallel (see

Figure 32).

In our continuing example, looking at the six plans generated by the bucket algorithm

we can see that the first four plans p1, p2, p3 and p4 have the same subgoal order (the order

of the subgoals of the sources in the plan): book →price-of → review-of; while the other

77

two plans p5, p6 have the subgoal order:price-of →book → review-of. So we can use the

following two parallel plans to give all of the tuples that the six plans give in this example:

p
′
1=((Sfbf

11 ∪ Sfbf
12) ./ (Sbf

21 ∪ Sbf
22))./ Sbff

31 ,

p
′
2=((Sfb

21 ∪ Sfb
22) ./ Sbff

13)./ Sbff
31

These plans access all the sources related to a given subgoal of the query in parallel (see

Section 4.2 for a more detailed description of their semantics). An important advantage

of these plans over linear plans is that they avoid the significant redundant computation

inherent in executing all feasible linear plans separately. In our example, plan p1 and p2

will both execute source queries Sfbf
11 and Sbff

31 with the same binding patterns. In contrast,

p1
′ avoids this redundant access.1

The Need for searching in the space of parallel plans: One remaining question is

whether we should search in the space of parallel plans directly, or search in the space of

linear plans and post-process the linear plans into a set of equivalent parallel plans. An

example of the post-processing approach may be one which generates top N plans using

methods similar to those outlined in [DH02] and then parallelizes them. However such

approaches in general are not guaranteed to give cost-coverage tradeoffs that are attainable

by searching in the space of parallel plans because: (i) the cost of generating a single

high-quality parallel plan can be significantly lower than the cost of enumerating, rank-

ordering the top N linear plans and post-processing them and (ii) since the post-processing

approaches separate the cost and coverage considerations, the utility of the resulting plans

can be arbitrarily far from the optimum.
1Notice that here we are assuming that the linear plans are all executed independently of one another.

A related issue is the optimal way to execute a union of linear plans–they can be executed in sequence, with
cached intermediate results (which will avoid the redundant computation, but increases the total execution
time), or executed in parallel (which reduces the execution time but incurs the redundant accesses). These
two options are really special cases of the more general option of post-processing the set of linear plans into
a minimal set of parallel plans and executing them (see below).

78

Query Mapping

Module

Bucket

Generator

Discovered

Frequent Classes

Utility

Estimator

Subgoal Ordering Module

OR
ParPlan-DP
 ParPlan-Greedy

Learned

Statistics

Subplan

Generator

Query

Query Plan

SP

i
B

i-1,
R

i

Utility

Metrics

Figure 31. Multi-R architecture

Moreover, we will see that the main possible objection to searching in the space of

parallel plans–that the space of parallel plans may be much larger than the space of linear

plans–turns out to be a red herring. Specifically, our approach involves searching in the

space of subgoal orders, and for each subgoal order efficiently generating a high-quality

parallel plan. This approach winds up adding very little additional planning overhead over

that of searching in the space of linear plans, and even this overhead is more than made up

for by the fact that we avoid the inefficiencies of phased optimization.

The joint optimization approach described and motivated in the foregoing has been

implemented in Multi-R. Figure 31 shows the architecture of Multi-R. For a user query,

Multi-R first maps it to a set of frequent query classes and estimates the coverage and

overlap statistics for the query using the techniques described in Section 3.7. Using these

statistics the bucket generator generates a bucket, for each subgoal of the query, which

79

contains all the relevant sources exporting the subgoal relation. Multi-R searches in the

space of “parallel” query plans. The partial (parallel) plans are evaluated in terms of a

general “utility” metric, that takes both cost and coverage of the plan into account. The

search for query plans is done in terms of two interleaved processes: the first is a search

conducted in the space of subgoal orders, and the second is a procedure that provides a

high-quality subplan for a given subgoal, in the context of the current partial plan. The first

process can be done either with a dynamic programming style search or a greedy search.

For the second one, we use a greedy algorithm (that is nevertheless optimal when certain

restrictions are met on subgoal independence). In the following two sections, we discuss the

cost models we use for evaluating parallel query plans, and the search algorithms used to

generate query plans with highest utility.

4.2. Parallel Query Plans

In this section, we first formally define the concept of a query and a parallel query

plan. we then discuss how to compute the cost and coverage of a parallel plan. At last we

discuss how to combine the cost and coverage into a single utility metric according to user

preferences.

4.2.1. Queries and Parallel Query Plans. Let’s assume R1(X1), R2(X2), ...,

Rn(Xn) are mediated schema relations, a query in our data integration system has the

form: Q(X) :- R1(X1), R2(X2), ..., Rn(Xn). The atom Q(X) is called the head of the

datalog rule, and the atoms R1(X1), R2(X2), ..., Rn(Xn) are the subgoals in the body of

the rule. The tuples X, X1, X2, ..., Xn contain either variables or constants, and we need

X⊆X1∪X2 ∪... ∪Xn for the query to be safe.

80

R1 R2 Rn

S11

S12

S13

S21

S22

S23

Sn1

Sn2

Sn3

B0 B1 B2 Bn-1 Bn

Figure 32. A parallel query plan

A parallel query plan p has the form

p = ((...(sp1 ./ sp2) ./ ...) ./ spn−1)./ spn,

where spi = (Si1 ∪ Si2 ∪ ... ∪ Simi)

Here spi is a subplan and Sij is a source relation corresponding to the ith subgoal of the

subgoal order used in the query plan. The semantics of subplan spi are that it queries its

sources in parallel and unions the results returned from the sources. The semantics of plan

p are that it joins the results of the successive subplans to answer the query.

To clarify this process more, we need the concept of binding relations,2 which are

intermediate relations that keep track of the partial results of executing the first k subplans

of the query plan. Given a query plan of n subgoals in the order of R1, R2, ..., Rn, we define

a corresponding sequence of n + 1 binding relations B0, B1, B2, ..., Bn (see Figure 32). B0

has the set of variables bound in the query as its schema, and has as its instance a single

tuple, denoting the bindings specified in the query. The schema of B1 is the union of the

schema of B0 and the schema of the mediated relation of R1. Its instance is the join of B0

and the union of the source relations in the subplan of R1. Similarly we define B2 in terms
2The idea of binding relations is first introduced in [YLUG99] for linear query plans where each subgoal

of the query has only one source relation. We use a generalization of this idea to parallel plans.

81

of B1 and the mediated relation of R2, and so on. The answer to the (conjunctive) query

is defined by a projection operation on Bn.

4.2.2. Cost and Coverage Models. The main aim of this section is to describe

the models we use to estimate the execution cost and coverage of (parallel) query plans,

and how we combine the cost and coverage components into an aggregate utility metric for

the plan.

Source Statistics: For a source S defined over the attributes A = {A1, A2, ..., Am} and

the mediated schema defined in the data integration system as R1, R2, ..., Rn, we currently

assume the following statistical data:

1. For each attribute Ai, its length, and for each attribute Ai in source relation S, the number

of distinct values of Ai;

2. For each source: the number of tuples, the feasible binding patterns, the local delay time to

process a query, the bandwidth between the source and the integration system and the initial

set up latency;

3. For each mediated relation Rj , its coverage in the source S, denoted by P (S|Rj), for example,

P (S|author) = 0.8 denotes that source S stores 80% of the tuples of the mediated relation

author(name, title) of all the sources in the data integration system. Following [NLF99,

FKL97], we also make the simplifying assumption that the sources are “independent” in that

the probability that a tuple is present in source S1 is independent of the probability that the

same tuple is present in S2.

These assumptions are in line with the types of statistics used by previous work [LRO96,

NLF99]. Techniques for learning response time statistics through probing are discussed in

[GRZ+00], while those for learning coverage statistics are discussed in the Chapter 3.

82

Estimating the Cost of a parallel plan: In this dissertation, we will estimate the cost of

a parallel plan purely in terms of its execution time. We will also assume that the execution

time is dominated by the tuple transfer costs, and thus ignore the local processing costs at

the mediator (although this assumption can be relaxed without affecting the advantages of

our approach). Thus the execution costs are computed in terms of the response times offered

by the various sources that make up the (parallel) plan. The response time of a source is

proportional to the number of times that source is called, and the expected number of tuples

transferred over each call. Since the sources have binding pattern limitations, and the set of

feasible source calls depend on the set of call variables that can be bound, both the number

of calls and the number of tuples transferred depend on the value of the binding relation

preceding the source call.

Specifically, suppose we have a plan p with the subplans {sp1, sp2, ..., spn}. The cost

of p is given by:

cost(p) .=
∑

i

responseT ime(spi)

The response time of each subplan spi(= {Si1 , Si2 , ..., Sim} ∈ p) is computed in

terms of the response times of the individual sources that make up the subplan. Since the

sources are processed in parallel, the cumulative response time is computed as the sum of

the maximum response time of all the sources in the subplan and a fraction of the total

response time of the sources in the subplan:

responseT ime(spi) = maxj∈[1,m]{responseT ime(Sij , Bi−1)}+

β ×∑
j 6=maxRT

responseT ime(Sij , Bi−1)

where β is a weight factor between 0 and 1, which depends on the level of parallelism

assumed to be supported by the system and the network. β = 0 means that the system

83

allows full parallel execution of all the sources queries, while β = 1 means that all the

source queries have to be executed strictly sequentially. Notice that the response time of

each source is being computed in the context of the binding relation preceding that source

call. For a source S under the binding relation B, we have

responseT ime(S,B) = msgDelay(S) ∗msgs(S, B)+

bytes(S, B)/localDelay(S)+

bytes(S, B)/bandWidth(S)

where msgs(S, B) is the number of separate calls made to the source S under the binding

relation B, and bytes(S, B) denotes the total bytes sent back by the source S in response

to these calls.

Estimating the Coverage of a parallel plan: For a plan p = {sp1, sp2, ..., spn}, the

coverage of p will depend on the coverages of the subplans spi in p and the join selectivity

factors of the subgoals and sources associated with these subplans. Let Rspi be the corre-

sponding subgoal of the subplan spi={Si1 , Si2 , ..., Sim}. We use SFJ(Bi−1, spi) to denote

the join selectivity factor between the sources within the ith subplan and the binding rela-

tion resulting from joining the first i− 1 subplans, and SFJ(B̂i−1, Rspi) to denote the join

selectivity factor between the ith subgoal relation and the binding relation resulting from

joining the first i− 1 subgoal relations. Coverage of the plan p can be computed as:

coverage(p) =
∏n

i=1[card(spi)× SFJ(Bi−1, spi)]∏n
i=1[card(Rspi)× SFJ(B̂i−1, Rspi)]

If we assume that the subplans cover their respective relations uniformly (which is

likely to be the case as the sizes of the subplans and their coverages increase), then we have

SFJ(Bi−1, spi) = SFJ(B̂i−1, Rspi).

This, together with the fact that card(spi)
card(Rspi)

is just the definition of P (spi|Rspi), simplifies

84

the expression for coverage of p to

coverage(p) =
n∏

i=1

[P (spi|Rspi)]

The coverage of a subplan itself can be written in terms of the coverages provided

by the individual sources exporting that relation:

P (spi|Rspi) = P (∪Sij
∈spiSij |Rspi)

= P (Si1 |Rspi) + P (Si2 ∧ ¬Si1 |Rspi) + ...+

P (Sim ∧ ¬Si1 ∧ ... ∧ ¬Sim−1 |Rspi)

As mentioned earlier, we assume that the contents of the sources are independent of

each other. That is, the presence of a tuple in one source does not change the probability

that the tuples also belongs to another source. Thus, the conjunctive probabilities can all

be computed in terms of products. E.g.

P (Si2 ∧ ¬Si1 |Rspi) = P (Si2 |Rspi) ∗ (1− P (Si1 |Rspi))

4.2.3. Combining Cost and Coverage. The main difficulty in combining the

cost and the coverage of a plan into a utility measure is that, as the length of a plan (in

terms of the number of subgoals covered) increases, the cost of the plan increases additively,

while the coverage of the plan decreases multiplicatively. In order to make these parameters

combine well, we take the sum of the logarithm of the coverage component and the negative

of the cost component:3

utility(p) = w ∗ log(coverage(p))− (1− w) ∗ cost(p)
3We adapt this idea from [C01] for combining the cost and quality of Multimedia database query plans,

where the cost also increases additively and the quality (such as precision and recall) decreases multiplica-
tively when the number of predicates increases.

85

The logarithm ensures that the coverage contribution of a set of subgoals to the utility

factor will be additive. The user can vary w from 0 to 1 to change the relative weight given

to cost and coverage.4

4.3. Generating Query Plans

The algorithms presented in this section aim to find a high-quality parallel plan–i.e.,

the parallel plan with high utility. Our basic plan of attack involves considering different

feasible subgoal orderings of the query, and for each ordering, generating a parallel plan that

has the highest utility. To this end, we first consider the issue of generating a high-quality

plan for a given subgoal ordering.

Given the semantics of parallel plans (see Figure 32), this involves finding a high-

quality “subplan” for a subgoal relation under a given binding relation. We provide an

algorithm for doing this in Section 4.3.1. We then tackle the question of searching the space

of subgoal orders. For this, we develop a dynamic programming algorithm (Section 4.3.2)

as well as a greedy algorithm (Section 4.3.3).

4.3.1. Subplan Generation. The algorithm CreateSubplan shown in Algorithm 1

computes a high-quality subplan for a subgoal R, given the statistics about the m sources

S1, S2, ..., Sm that export R, and the binding relation at the end of the current (partial)

plan, CreateSubplan first computes the utility of all the sources in the bucket, and then

sorts the sources according to their utility value. Next the algorithm adds the sources from

the sorted bucket to the subplan one by one, until the utility of the current subplan becomes
4In the actual implementation we scale the coverage appropriately to handle the discontinuity at 0, and

use normalization to make the contribution from the coverage component to be in the same range as that
from the cost component.

86

less than the utility of the previous subplan. We use the models discussed in Section 4.2.2

to calculate the utility (cost and coverage) of the subplans.

Algorithm 1 CreateSubplan
1: input: B: the binding relation; R : the subgoal in the query
2: output: sp : the best plan
3: begin
4: sp ← {}
5: Bucket ← the Bucket for the subgoal R;
6: for each source s ∈ Bucket do
7: if (s is feasible under B) then
8: utility(s) = w ∗ log(coverage(s))−

(1− w) ∗ responseT ime(s, B);
9: else

10: remove s from Bucket
11: end if
12: end for
13: sort the sources in Bucket in decreasing order of their utility(s);
14: s ← the first source in the sorted Bucket;
15: while (s != null) and (utility(sp + {s}) > utility(sp)) do
16: sp ← sp + {s}
17: s ← the next source in the Bucket;
18: end while
19: return sp;

20: end

Although the algorithm has a greedy flavor, the subplans generated by this algorithm

can be shown to be optimal if the sources are conditionally independent [FKL97] (i.e., the

presence of an object in one source does not change the probability that the object belongs

to another source). Under this assumption, the ranking of the sources according to their

coverage and cost will not change after we execute some selected sources.

The running time of the algorithm is dominated by line 15, which is executed m

times, taking O(m) time in each loop for computing the utility of the subplan (under the

source independence assumption). Thus the algorithm has O(m2) complexity.

4.3.2. A Dynamic Programming Approach for Parallel Plan Generation.

In the following we introduce a dynamic programming-style algorithm called ParPlan-DP

which extends the traditional System-R style optimization algorithm to find a high-quality

87

parallel plan for the query. The basic idea is to generate the various permutations of the

subgoals, compute a high-quality parallel plan (in terms of utility) for each permutation,

and select the best among these. While our algorithm is related to a traditional system-

R style algorithm, as well as its recent extension to handle binding pattern restrictions

(but without multiple overlapping sources), given in [FLMS99], there are some important

differences:

1. ParPlan-DP does source selection and subgoal ordering together according to our

utility model for parallel plans; while the traditional System-R and [FLMS99] just

need to pick a single best subgoal order according to the cost model.

2. ParPlan-DP has to estimate attribute sizes of the binding relations for partial parallel

plans, where there are multiple sources for a single subgoal. So we have to take the

overlap of sources in the subplan into account to estimate the sizes of each of the

attributes in the binding relation.

3. ParPlan-DP needs to remember all the best partial plans for every subset of one or

more of the n subgoals. For each subset, it stores the following information: (i) the

best plan for these subgoals; (ii) the binding relation of the best plan; and (iii) the

cost, coverage and utility of the best plan. In contrast, a traditional system-R style

optimizer need only track the best plan, and its cost [SACL79].

The subgoal permutations are produced by the dynamic construction of a tree of

alternative plans. First, high-quality plans for single subgoals are computed, followed by

the plans for pairs and larger subsets of subgoals, until the plan for n subgoals is computed.

When we have the plan for any i subgoals, we can find the plan for i + 1 subgoals by using

the results of first i subgoals and finding the best subplan for the i+1th subgoal under the

88

Algorithm 2 ParPlan-DP

1: Input: BUCKETS : Buckets for the n subgoals;
2: output: p : the best plan
3: begin
4: S← {}; {a queue to store plans;}
5: p0.plan← {}; {p0: the initial node}
6: p0.B← B0; {the binding relation of p0: B0}
7: p0.R← {}; {the selected subgoals of p0: empty}
8: p0.utility← −∞; {the utility of p0: negative infinity}
9: S← S + {p0};

10: p← pop the first plan from S;
11: while (p 6= null) and (# of subgoals p.R < n) do
12: for each feasible subgoal Ri(∈ BUCKETS and /∈ p.R) do
13: make a new plan p′ ;
14: sp ← CreateSubplan(p.B, Ri);
15: p′.plan ← p.plan + sp;
16: m ← # of sources in sp;
17: p′.B←p.B ./ (

Sm
i=1 Si); {Si ∈ sp}

18: p′.R← p.R + {Ri};
19: p′.utility←utility(p′);
20: if (∃p1 ∈ S) and (p1.R commutatively equals p′.R) and (p′.utility > p1.utility) then
21: remove p1from S and push p′ into S
22: else if (p′.utility ≤ p1.utility) then
23: if (w = 1) and (p′.coverage = p1.coverage) and (p′.cost ≤ p1.cost) then
24: remove p1from S and push p′ into S
25: else
26: ignore p′

27: end if
28: else
29: push p′ into S;
30: end if
31: end for
32: p← pop the first plan from S;
33: end while
34: return p;

35: end

binding relation given by the subplans of the first i subgoals. In practice, the algorithm does

not need to generate all possible permutations. Permutations involving subgoals without

any feasible source queries are eliminated.

Complexity: The worst case complexity of query planning with ParPlan-DP is is O(2nm2),

where n is the number of subgoals in the query and m is the number of sources exporting each

subgoal. The 2n factor comes from the complexity of traditional dynamic programming,

and the m2 factor comes from the complexity of CreateSubplan.

89

We also note that our way of searching in the space of parallel plans does not increase

the complexity of our query planning algorithm significantly. In fact, our O(2nm2) com-

plexity compares very favorably to the complexity of the linear plan enumeration approach

described in [LRO96], which will be O(mnn2), where mn is the number of linear plans that

can be enumerated, and n2 is the complexity of the greedy algorithm they use to find the

feasible execution order for each linear plan. This is despite the fact that the approach in

[LRO96] is only computing feasible rather than optimal execution orders (the complexity

would be O(mn2n) if they were computing optimal orders).

4.3.3. A Greedy Approach. We noted that ParPlan-DP already has better com-

plexity than the linear plan enumeration approaches. Nevertheless, it is exponential in the

number of query subgoals. In order to get a more efficient algorithm, we need to trade the

optimality guarantees for performance. We introduce a greedy algorithm ParPlan-Greedy

(see Algorithm 3) which gets a plan quickly at the expense of optimality.

This algorithm gets a feasible execution plan by greedily choosing the subgoal whose

subplan can increase the utility of the current plan maximally. The subplan for that chosen

subgoal is added to the plan, and the procedure is repeated until every subgoal has been

covered.

The worst-case running time of ParPlan-Greedy is O(n2m2), where n is the number

of subgoals in the query, and m is the number of sources per subgoal.

Theoretically, ParPlan-Greedy may produce plans that are arbitrarily far from the

true optimum, but we shall see in Section 4.4 that its performance may be quite fair in

practice.

90

Algorithm 3 ParPlan-Greedy
1: Input: BUCKETS : Buckets with n subgoals;
2: output: p : the best plan
3: begin
4: B← B0;

5: UCS←all n subgoals in the query;
6: p← {};
7: while (UCS 6= {}) do
8: for each feasible subgoal Ri(∈ UCS) do
9: spi ← CreateSubplan(B, Ri);

10: end for
11: spmax←subplan which will maximize utility(p + spi){If w = 1, among the subplans with the highest

coverage, we choose the subplan with cheapest cost.};
12: p← p + spmax;
13: UCS← UCS − {Rmax};
14: m ← # of sources in spmax;
15: B←B ./ (

Sm
i=1 Si); {Si ∈ spmax}

16: end while
17: return p;

18: end

4.4. Empirical Evaluation

We have implemented the query planning algorithms described in this dissertation.

In this section, we describe the results of a set of simulation studies that we conducted with

these algorithms. The goals of the study are: (i) to compare the planning time and estimated

quality of the solutions provided by our algorithms with the approaches that enumerate and

execute all linear plans, (ii) to demonstrate that our algorithms are capable of handling a

spectrum of desired cost-quality tradeoffs, and (iii) to compare the performance of ParPlan-

DP and ParPlan-Greedy. Towards the first goal, we implemented the approach described

in [LRO96]. This approach enumerates all linear plans, finds feasible execution orders for

all of them, and executes them.

The experiments were done with a set of simulated sources. The sources are specified

solely in terms of the source statistics. We used 206 artificial data sources and 10 mediated

relations covering all these sources. The statistics for these sources were generated randomly,

60% sources have coverage of 20% − 40% of their corresponding mediated relations, 20%

91

sources have coverage of 40%−80%, 10% sources have coverage below 20%, and 10% sources

have coverage above 80%. 90% of the sources have binding pattern limitations. We also

set the response time statistics of these sources to represent both slow and fast sources:

20% of sources have a high response time, 20% of them have low response time, and 60%

of them have a medium response time. The source statistics are used to estimate the costs

and coverages of the plans, as described in Section 4.2. The queries used in our experiments

are hybrid queries with both chain query and star query features [PL00], and their subgoals

have 2-3 attributes. For example,

Q(A1, A4, A7) : −R1(A1, A2, A3), R2(A2, A3, A4), R3(A3, A5, A6), R4(A6, A7), A4 = x0.

The comparison between our approach and that in [LRO96] will be influenced by

the parameter β. When β is close to 1, the amount of parallelism supported is low. This is

particularly hard on the approach in [LRO96] as all the linear plans have to be essentially

sequentially executed. Because of this, in all our simulations (except those reported in

Figure 36), we use β = 0 as the parameter to compute the response times as this provides

the maximum benefit to the algorithms in [LRO96], and thus establishes a lower bound

on the improvements offered by our approach in comparison. All our simulations were run

under JDK 1.2.2 on a SUN ULTRA 5 with 256Mb of RAM.

Planning time comparison: Figure 33 and Figure 34 compare the planning time for our

algorithms with the approach in [LRO96]. In Figure 33, we keep the number of sources

per subgoal constant at 8, and vary the number of subgoals per query from 1 to 10. In

Figure 34, we keep the number of subgoals constant at 3, and vary the number of sources

per subgoal from 5 to 50. The planning time for [LRO96] consists of the time taken to

produce all the linear plans and find a feasible execution order for each plan using the

greedy approach in [LRO96], while the time for our algorithms consists of the time taken to

92

construct and return their best parallel plan. We see right away that both our algorithms

incur significantly lower plan generation costs than the decoupled approach used in [LRO96].

We also note that ParPlan-Greedy scales much better than ParPlan-DP as expected.

1

10

100

1000

10000

100000

1000000

10000000

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

of subgoals

M
ill

is
ec

on
ds

D P

Greedy

[LRO96]

Figure 33. Variation of planning time with the query size (when the the number of relevant

sources per subgoal is held constant at 8). X axis plots the query size while Y axis plots

the planning time.

1

10

100

1000

10000

100000

1000000

5
 10
 15
 20
 25
 30
 35
 40
 45
 50

of sources per subgoal

M
ill

is
ec

on
ds

D P

Greedy

[LRO96]

Figure 34. Variation of planning time with number of relevant sources per subgoal (for

queries of size 3). X axis plots the query size while Y axis plots the planning time.

93

Quality comparison: In Figure 35, we plot the estimates of the cost and coverage of

plans generated by ParPlan-DP as a percentage of the corresponding values of the plans

given by the algorithm in [LRO96]. The cost and coverage values for the plans generated by

each of the approaches are estimated from the source statistics, using the methods described

in Section 4.2. We use queries with 4 subgoals and each subgoal with 8 sources. Notice

that the algorithms in [LR096] do not take account of the relative weighting between cost

and coverage. So the cost and coverage of the plans produced by this approach remains the

same for all values of w. We note that the best plan returned by our algorithm has a pretty

high estimated coverage (over 80% of the coverage for w over 0.4) while incurring cost that

is below 2% of that incurred by [LRO96]. Note also that even though our algorithm seems

to offer only 20% of the coverage offered by [LRO96] at w=0.1, this makes sense given that

at w=0.1, the user is giving 9 times more weight to cost than coverage (and the approach

of [LRO96] is basically ignoring this user preference and attempting full coverage).5 In

Figure 36, we compare the execution cost of plans given by our approach with that given

by [LRO96] with different values of β in the response time estimation. As we can see the

bigger the β, the better our plan execution cost relative performance. This is because, for

any β larger than 0, the cost model will take into account the cost of redundant queries,

which will further worsen the execution cost of the [LRO96].
5It is interesting to note that the execution cost for our approach turns out to be better than that of

[LRO96] even when w = 1, when both approaches are forced to access all sources to maximize coverage.
Since we kept β = 0, one might think that the execution costs should be same for this particular case. The
reason our approach winds up having better execution cost even in this scenario is that it finds the best
execution order of the parallel plan. In contrast, the [LRO96] approach just finds a feasible execution order
for its plans. Because there are so many linear plans, the probability that one of them will wind up getting
a feasible plan with high execution cost is quite high.

94

0

10

20

30

40

50

60

70

80

90

100

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

P
er

se
nt

ag
e

Coverage

Cost

Figure 35. Comparing the quality of the plans generated by ParPlan-DP algorithm with

those generated by [LRO96] (for queries of 4 subgoals), while the weight in the utility

measure is varied. X axis shows the weight value in the utility measure and Y axis plots

the cost and coverage of our algorithm expressed as a percentage of the cost and coverage

provided by [LRO96].

0

0.005

0.01

0.015

0.02

0.025

0.03

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

C
o

st
(D

P
)/

C
o

st
(L

R
O

96
)

β=0

β=0.01

β=0.1

β=1

Figure 36. Ratio of the execution cost of the plans given by ParPlan-DP to that given by

[LRO96], for a spectrum of weights in the utility metric and parallelism facter β in the

response time estimate. X axis varies the coverage-cost tradeoff weights used in the utility

metric, and Y axis shows the ratio of execution costs for different β.

Comparing the greedy and exhaustive approaches: In order to compare ParPlan-

95

DP and ParPlan-Greedy in terms of the plan quality, we experimented with queries with

4 subgoals and each subgoal with 8 sources, while the utility function is varied from being

biased towards cost to being biased towards coverage. Figure 37 shows the utility of the

best plan produced by ParPlan-Greedy as a percentage of the utility of the plan produced

by ParPlan-DP. We observe, as expected, that the utility of plans given by ParPlan-DP

is better than that of the ParPlan-Greedy with small initial weight (corresponding to a

bias towards cost), with the ratio tending to 1 for larger weights (corresponding to a bias

towards coverage). It is also interesting to note that at least in these experiments, the greedy

algorithm is always producing plans that are within 70% of the utility of those produced

by ParPlan-DP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

U
til

ity
(G

re
ed

y)
/U

til
ity

(D
P

)

Figure 37. Ratio of the utility of the plans given by ParPlan-Greedy to that given by

ParPlan-DP for a spectrum of weights in the utility metric. X axis varies the weight used

in the utility metric, and Y axis shows the ratio of utilities.

96

0

10

20

30

40

50

60

70

80

90

100

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Weights

P
er

ce
nt

ag
e

Coverage

Cost

Figure 38. Comparing the Coverage and cost of the plans found by ParPlan-DP by using

different weights in Utility function, on queries of 4 subgoals. X axis varies the weights in

the utility function, while the Y axis shows the cost and coverage as a percentage of the

cost and coverage offered by our ParPlan-DP with weight=1.

Ability to Handle a spectrum of cost-coverage tradeoffs: Our final set of experiments

was designed to showcase the ability of our algorithms to handle a variety of utility functions

and generate plans optimized for cost, coverage or a combination of both. Figure 38 shows

how the coverage and the cost of plans given by our ParPlan-DP changes when the weight

of the coverage in the utility function is increased. We observe that as expected both the

coverage and the cost increase when we try to get higher coverage. We can also see that for

the particular query at hand, there is a large area in which the cost increases slowly while

the coverage increases more rapidly. An intriguing possibility offered by plots like this is

that if they are done for representative queries in the domain, the results can be used to

suggest the best initial weightings–those that are likely to give high coverage plans with

relatively low cost–to the user.

97

4.5. Discussion

4.5.1. Multi-R Evaluation. As we mentioned earlier, Multi-R was evaluated using

simulated source statistics. Our evaluation can accurately measure the planning time of

different algorithms and compare the utility of the generated query plans using the utility

function. Although we cannot empirically evaluate the correctness of our proposed utility

function without using real data sources within a real data integration system, we believe

our utility model will work in real scenarios for the following reasons. First we adapted

the traditional cost model to compute the response time which has been evaluated by the

distributed DBMS community. Second the coverage model of a query plan is deduced

directly from the plan coverage definition. It would be better if we can evaluate Multi-R in

a real data integration system and directly use the coverage and overlap statistics learned

by StatMiner. This evaluation was not done in the dissertation because of the difficulty

in finding and/or developing a real data integration system which has a large number of

mediated relations, as well as multiple integrated sources for each relation. Additionally

since the scope of this dissertation covers mining and using coverage and overlap statistics,

we did not discuss how other types of statistics (e.g. response time) are learned. In order

to evaluate Multi-R in a real system, we would need techniques to gather other types of

statistics, as the overall performance of the query optimizer will be dependent on all the

statistics.

4.5.2. Multi-objective Query Optimization. The multi-objective problem is

to find the best possible solution for problems in which there are several possibly opposing

criteria or objectives. An optimum design problem must then be solved, with multiple

objectives and constraints taken into account. This type of problem is known as either a

98

multi-objective, multi-criteria, or a vector optimization problem [Azarm96].

In order to solve multi-objective problems, there are three popular approaches

[DCD99]. One popular approach is to cast them into the conventional search framework

after combining the multiple criteria into a single scalar criterion. However the task of

constructing the combined evaluation function is context and user dependent[DCD99]. An-

other approach is to optimize one criterion at a time under given constraints on the others.

The problem of the this approach is that we have to get a set of good constraints, in the

absence of which search becomes unduly expensive. Moreover, repeatedly searching the

same search space by progressively refining the constraints increase the search complexity

tremendously [DCD99]. The third approach is the multi-objective search approach. It de-

termines the set of all undominated solutions which is called a Pareto curver which captures

the informational concept of a trade-off [DCD99].

In the query optimization scenario, since the users may have multiple objective

w.r.t. query plans, we are interested in multi-objective problems too. Most of the exist-

ing approaches [SAP96, NLF99, NK01, DH02] use the first approach which combines the

multiple criteria (such as cost, delay, coverage, quality) into a single scalar criterion (see

Figure 39). The second approach is not used here because of its expensive planning cost

and the difficulty of getting good constraints. The multi-objective search approach is rarely

used because there are often exponentially many solutions on a Pareto curve. If we send

all these solution plans to users, they may have to spend a lot time to decide which one is

better (see Figure 40). Let me explain this using an example.

Example 1: Consider a Simple Mediator that integrates autonomous Internet sources. Let

there be a single relation, R1, in the global schema of the mediator. There are three sources:

S1, S2 and S3, each exporting a subset of the global relation. Let’s assume the users have

99

Find and

execute the

best plan

User

Query and

User Preference

Results

Query Processor

Figure 39. Query processing using combining multiple criteria approach

different interests in the coverage (number of answers) and the cost (response time) of the

query plans. So for a simple selection query on R1, there are 7 feasible query plans:

P1 = S1: coverage = 0.5 cost = 6(seconds),

P2 = S2: coverage = 0.4 cost = 7,

P3 = S3: coverage = 0.3 cost = 2,

P4 = S1 ∪ S2: coverage = 0.6 cost = 8,

P5 = S1 ∪ S3: coverage = 0.55 cost = 6.5,

P6 = S2 ∪ S3: coverage = 0.65 cost = 8.5,

P7 = S1 ∪ S2 ∪ S3: coverage = 0.8 cost = 13

As we can see there is only one plan P2 that is dominated by other plans. So there

are still 6 undominated plans. If we send all the plans to the user, it may be difficult for

them to make a decision in a short period of time. Here we just give a very simple example,

however for more complicated queries, there may be hundreds of undominated plans. In

order to pick the best plan, the user has to spend a lot of time to look at the plans and

then make a decision. Since in many mediators, executing a plan may only take seconds, it

will be prohibitively expensive to let user spend several minutes to pick a plan.

The paper [PY01] discussed how to solve the delay-cost tradeoff problem in the

Mariposa database system [SAP96] by using the recent Pareto curve computing techniques

to obtain in polynomial time an approximate trade-off (ε-Pareto curve), which is arbitrarily

100

Compute the

Pareto Curve

User

Query

Results

Query Processor

Execute the

best plan

User

Best Plan

Query Processor

Pareto

Curve

Figure 40. Query processing using pareto curve

close to the true Pareto curve. In this way they can trade the optimality of the solutions

for speed. However the number of points (solutions) in ε-Pareto curve may still be large.

This approach may be a good approach for problems with a small number of undominated

solutions, or scenarios where the users are willing to spend long time on picking a close-

to-optimum plan according to their preference. However in many other scenarios it will be

better for the mediator to get the users’ preference when (or before) the users submit their

queries, make a decision automatically, and only show the final results to the user.

4.6. Summary

In this chapter we started by motivating the need for joint optimization of cost and

coverage of query plans in data integration. We then argued that our way of searching in

the space of parallel query plans, using cost models that combine execution cost and the

coverage of the candidate plans, provides a promising approach. We described ways in which

cost and coverage of a parallel query plan can be estimated, and combined into an aggregate

utility measure. We then presented two algorithms to generate parallel query plans. The

first, ParPlan-DP, is a System-R style dynamic programming algorithm, while the second,

ParPlan-Greedy, is a greedy algorithm. Our experimental evaluation of these algorithms

demonstrates that for a given coverage requirement, the plans generated by Multi-R are

significantly better, both in terms of planning cost and in terms of the quality of the plans

101

produced (measured in terms of its coverage and execution cost), compared to the existing

approaches that use phased optimization using linear plans. We also demonstrated the

flexibility of our algorithms in handling a spectrum of cost-coverage tradeoffs.

CHAPTER 5

RELATED WORK

5.1. Mining Coverage and Overlap Statistics

The utility of quantitative coverage statistics to rank the sources was first explored by

Florescu et. al. [FKL97]. However, the primary aim of the effort was on modelling coverage

and overlap statistics, and it did not discuss how such coverage statistics could be learned.

The work requires a topic hierarchy, the manual creation of topic hierarchies is laborious and

error-prone. In contrast, this dissertation provides a framework for automatically learning

the required statistics without manual intervention.

There has been some previous work on learning database statistics both in multi-

database literature and data integration literature. Much of it, however, focused on learning

response time statistics. Zhu and Larson [ZL96] describe techniques for developing regres-

sion cost models for multi-database systems by selective querying. Adali et. al. [ACPS96]

discuss how keeping track of rudimentary access statistics can help in doing cost-based op-

timizations. More recently, the work by Gruser et. al. [GRZ+00] considers mining response

time statistics for sources in a data integration scenario. In contrast, our work focuses

on learning coverage and overlap statistics. As has been argued by us [NK01] and others

[DH02], query optimization in data integration scenarios require both types of statistics.

103

Another strand of related work [WMY00, IGS01, IG02] considers the problem of

text database selection in the context of keyword queries submitted to meta-search engines.

Although some of these efforts use a hierarchy of topics to categorize the Web sources, they

use only a single topic hierarchy and do not deal with computation of overlap statistics.

In contrast we deal with classes made up from the cartesian product of multiple attribute

value hierarchies, and are also interested in modeling overlap. This makes the issue of space

consumed by the statistics quite critical for us, necessitating our threshold-based approaches

for controlling the resolution of the statistics. Furthermore, most of the existing approaches

in text database selection assume that the terms in a user’s query are independent (to

avoid storing too many statistics). No efficient approaches have been proposed to handle

correlated keyword sets. We are currently working on applying our techniques to the text

database selection problem to effectively solve the space and learning overhead brought by

providing coverage and overlap statistics for both single word and correlated multi-word

terms.

5.2. Multi-Objective Query Optimization

The Bucket algorithm [LRO96] and the source inversion algorithm [DGL00] provide

two of the early approaches for generating candidate query plans in data integration. As

we mentioned in Section 4.1 the disadvantages of generating all possible linear plans and

executing them have lead to other alternate approaches. The work on Streamer project

[DH02] extends the query planning algorithm in [LRO96], so it uses the coverage information

to decide the order in which the potential plans are executed. The coverage is computed

using the source overlap models in [FKL97]. A recent extension of [LRO96] is the minicon

algorithm presented in [PL00]. Although minicon improves the efficiency of the bucket

104

algorithm, it still assumes a decoupled strategy – concentrating on enumerating linear plans

first, assessing their quality and executing them in a rank-ordered fashion next. The work

by Naumann et. al. [NLF99] offers another variation on the bucket algorithm of [LRO96],

where the set of linear plans are ranked according to a set of quality criteria, and a branch

and bound approach is used to develop top-N best linear plans. Although their notion

of quality seems to include both cost and coverage, their cost model seems to be quite

restrictive, making their approach a phased one in essence. For example, they claim that

“a change of the join execution order within a plan has no effect on its IQ [quality] score.”

As we have seen, join orders do have a significant impact on the overall quality (utility) of

the plan.

Although [YLUG99] and [FLMS99] consider the cost-based query optimization prob-

lem in the presence of binding patterns, they do not consider the source selection issue

in their work. Finally, parallel plans (or joins over unions) are quite standard in dis-

tributed/parallel database systems [LPR98; OV99]. Use of parallel plans in data-integration

scenarios does however pose several special challenges because of the uncontrolled overlap

between data sources, the source access (binding) restrictions, and the need to produce

plans for a variety of cost/coverage requirements.

5.3. Relation to Adaptive Query Optimization

Recently several adaptive query evaluation approaches including Tukwila [IFF+99],

Query Scrambling [UFA98, UF00], Eddies [AH00, MSHR02] are developed to handle the

problem of lack of statistics from autonomous online sources, and the unanticipated delays

and failures of the online sources. Most of them interweave optimization during execution.

105

Here we briefly describe these approaches, and show how my dissertation work is connected

to their approaches.

5.3.1. Existing Adaptive Query Evaluation Approaches.

5.3.1.1. Tukwila. Tukwila is developed to provide query evaluation techniques in

data integration scenarios where few statistics are collected from the autonomous sources,

and unanticipated delays and failures of the online sources are expected. Tukwila interleaves

optimization and execution at the core, which allows it to recover from decisions based on

inaccurate estimates. For a given query, the query optimizer produces query execution

plans via a System-R style dynamic programming algorithm. However the optimizer does

not always create a complex execution plan for the query. If essential statistics are missing or

uncertain, the optimizer may generate a partial plan, deferring subsequent planning until

sources have been contacted and critical metadata obtained. During execution, Tukwila

also checks at materialization points in order to detect opportunities for re-optimization.

Tukwila uses query operators that are especially suited for adaptive behavior - the double

pipelined hash join, which produces answers quickly, and the dynamic collector, which

robustly and efficiently computes unions across overlapping data sources.

5.3.1.2. Query Scrambling. In [UFA98], query scrambling has been introduced to

modify query execution plans on-the-fly when delays are encountered during runtime. In the

paper, the authors addressed the shortcoming of the heuristic-based approach and proposed

three different cost-based approaches to using query optimization for scrambling. In the

experiments, the authors use a two-phase randomized optimizer to explore the search space.

XJoin [UF00] introduced a reactively scheduled pipelined join operator, which is similar to

the double pipelined join operator (DPHJ). Compared to Xjoin, however, DPHJ does not

106

include reactively-scheduled background processing for coping with delayed sources.

5.3.1.3. Eddies. In [AH00], the authors introduced a query processing mechanism

called an eddy, which continuously reorders operators in a query plan as it runs. By com-

bining eddies with appropriate join algorithms, eddies can merge the optimization and

execution phase of query processing, allowing each tuple to have a flexible ordering of query

operators. A heuristic pre-optimizer is used to choose how to initially pair off relations into

joins.

5.3.2. Parameterized Decision Model. From the above discussion, we can see

that actually both Tukwila and Query Scrambling use a parameterized decision model and

explore the search space (Tukwila uses a System-R style dynamic programming algorithm,

Query Scrambling uses a two-phase randomized optimizer) to find the best initial plan, and

re-optimize a bad performance (or a partial) plan. Eddies do not use any parameterized

decision model and explore a search space. The reasons why eddies do not use traditional

static optimization techniques are that:

• In wide-area environments, the resources in a distributed environment can exhibit

widely fluctuating characteristics, and their performance may be unpredictable;

• Selectivity estimation is often quite inaccurate;

• In large-scale systems, many queries can run for a very long time.

As a result, assumptions made at the time a query is submitted will rarely hold throughout

the duration of query processing.

If a query optimizer does not use any parameterized decision model and explore a

search space, it will face the following issues:

107

1. Although a reactive processor can run multiple alternative plans (or subplans) at the

beginning, and adaptively choose among them over time. However it may be too costly

to execute all the feasible plans at the beginning stages of evaluating a query. This is

because we may have a lot of feasible plans available, especially in the data integration

scenario where for each mediated relation we may have dozens or hundreds of source

relations export information for it. In order to avoid wasting too many computing

resources on unpromising alternatives, the optimizer has to select a small set of good

plans. A heuristic based pre-optimization approach can be used to find these initial

plans. However, as the previous work shows, the utility of the query plan generated

by heuristic based approaches can be arbitrarily far away from optimal;

2. Changes of some query plans on the fly may require significant processing and code

complexity to guarantee correct results. This is because many join operators (and

other operators) cannot be easily reordered;

3. Eddies assume that the queries take a very long time to run, and during the running

of the plan, the environment changes dramatically. However, in many data integra-

tion scenarios, this may not be the case. More importantly, other parameters of the

environment (such as coverage and overlap of the sources and number of answer tuples

of a query from a source) have a very low chance of changing dramatically during the

running of the plan.

5.3.3. Adaptive Query Processing and my Dissertation Work. My research

shares the same motivation of the above approaches: the sources are autonomous, so very

few statistics can be expected from the sources. We are trying to solve the lack of statistics

by automatically learning the (coverage) statistics from the sources for a mediator using

108

a novel association rule mining approach, and adaptively updating the statistics as the

environment changes. With these learned up-to-date statistics the query engines (including

Tukwila and Query Scrambling) can generate more accurate initial query plans, which will

definitely improve the performance of these query engines by avoiding too many unnecessary

reoptimization.

We also provide a joint optimization approach to select plans (or initial plans) based

on both the response time and coverage of the plans. The existing adaptive query evaluation

approaches can be view as complementary to my dissertation work, since my dissertation

does not focus on plan execution, while Tukwila and Query Scrambling do not focus on the

query joint optimization. The replanning approach in Tukwila and Query Scrambling could

be used to handle the unexpected delays of the source calls in the initial plans generated by

our multi-objective approach. As the authors of Eddies mentioned, eddies can be viewed

as complementary work to Tukwila and Query Scrambling. Eddies can be used to do tuple

scheduling within pipelines, and Tukwila and Query Scrambling can be used to reoptimize

across pipelines.

CHAPTER 6

CONCLUSION and FUTURE DIRECTIONS

The dissertation motivated the need for automatically learning the coverage and

overlap statistics of Internet sources and the need for joint optimization of cost and coverage

of parallel query plans for efficient query processing in a data integration scenario. We have

proposed a set of connected techniques for efficient query processing:

StatMiner: Automated learning of Attribute Value hierarchies, and using threshold based

data mining techniques to discover frequent query classes (or large classes in scenarios

without query distributions) and to learn their coverage and overlap statistics;

Multi-R: Searching in the space of parallel query plans, and using cost models that combine

execution cost and coverage of the candidate plans.

As part of my dissertation work, StatMiner has been implemented and evaluated in the

context of BibFinder, and Multi-R has been implemented and evaluated in a synthetic

dataset. The empirical evaluation shows that:

• StatMiner can systematically trade the statistics learning time and memory space con-

sumption of statistics remembered for accuracy by varying the frequent class thresh-

olds;

110

• The learned statistics by StatMiner provide tangible improvements in the source rank-

ing, and the improvement is proportional to the type (coverage alone vs. coverage

and overlap) and granularity of the learned statistics;

• The plans generated by Multi-R were significantly better compared to the existing

approaches, both in terms of planning cost, and in terms of plan execution cost.

I believe my dissertation work has made significant advances towards solving the

problem of source selection and multi-objective query optimization in data integration sys-

tems. However, there are several important directions in which my dissertation work could

be extended.

6.1. Incremental Update of Statistics

One of the simplifying assumptions in our source statistics mining work to date is

that queries asked by the users in future will have the same distribution as the past queries.

Since the users’ interests may change over time, an important extension is to incrementally

update the learned statistics with respect to the users’ most recent interests. To handle

shifting interests of the user population, we propose to keep track of a sliding window of user

queries and incrementally recompute the “frequent” query classes. This in turn involves

updating the AV-hierarchies (see Section 3.4).

Because of the dynamic nature of the sources, the coverage and overlap of the sources

could change over time. In order to dynamically update the statistics with respect to the

changes of the integrated sources, we propose to periodically probe all sources using the user

queries and check the inconsistency between the estimated statistics and the current real

coverage and overlap of the sources. If a large inconsistency is found, StatMiner re-learns

111

the statistics with respect to the corresponding query class by probing the sources using

the queries subsumed by the class.

6.2. First Tuples Fast

Traditional query optimization focused on optimizing the response time [GHK92]

of the last tuple of a plan or the total work [SACL79] of executing a plan. However if

the users are interested in getting first answer tuples fast, which becomes more and more

important in the Internet data integration scenario, then even if two plans have the same

total response time (or total work) and the same number of answers, the utility of those

two plans may still be very different because the response time for their first k answers may

be very different [VN02]. In order to evaluate how good the performance of these plans are

in terms of first tuples fast, we propose a utility model which takes the number of tuples,

the response time of these tuples, and the total work into account:

utility(p) = reward(p) + β ∗ work(p)

reward(p) =
∑

i

γtinumoftuplei

Here β is an adjustable parameter which may depend on the workload of the system, ti is

the ith stage of the plan execution period, numoftuplei is the number of tuples we get at

stage ti, and γti is an adjustable discount factor for the tuples delivered at stage ti. we

believe including this reward function with delay penalty in Multi-R would lead to plans

giving first answer tuples fast.

112

6.3. Applications

There are opportunities to apply some of the lessons from my research to other

domains. One direction is the integration of Bioinformatic data sources. There has been an

increased interest in approaches for effectively integrating the hundreds of public-domain

biological sources containing data on classes of scientific entities such as genes and sequences.

Each source may have data on one or more classes. There is significant diversity in the

coverage of these sources. Relationships between scientific objects are often implemented

as physical links between data sources [LNRV03]. Since biologists are often interested in

exploring relationships between scientific objects stored in different sources, our work in

multi-objective query optimization can be extended to automatically select efficient query

plans (paths) from the many alternative paths, and my work in source coverage and overlap

statistics learning can be extended to mine path coverage and overlap statistics.

Another direction is database selection in distributed information retrieval. My work

in mining coverage and overlap statistics can be extended to select text databases in dis-

tributed information retrieval. In order to avoid storing too many statistics, most of the

existing approaches to select relevant text databases in distributed information retrieval as-

sume that the terms in a user’s query are independent and that sources are not overlapping.

Our frequency-based coverage and overlap mining approach could effectively solve the space

and learning overhead brought by providing coverage and overlap statistics for both single

word and correlated multi-word terms.

REFERENCES

[AH00] R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive Query Processing. In
Proceedings of SIGMOD, 2000.

[AM] Amazon. http://www.amazon.com.

[AS94] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining Association
Rules. In VLDB, Santiage, Chile, 1994.

[Azarm96] Shapour Azarm. Multiobjective Optimum Design. 1996.
http : //www.glue.umd.edu/ azarm/optimum notes/multi/multi TOC.html.

[BF] BibFinder. http : //rakaposhi.eas.asu.edu/bibfinder.

[BFG01] Robert Baumgartner, Sergio Flesca and Georg Gottlob. Visual Web Information
Extraction with Lixto. In VLDB conference, 2001.

[C01] K.S. Candan. Query optimization in Multi-media and Web Databases. ASU CSE
TR 01-003. Computer Science & Engg. Arizona State University.

[C77] William G. Cochran. Sampling Techniques. John Wiley & Sons. Third edition, 1977.

[CFN77] G. Cornuejols, M. L. Fisher and G. L. Nemhauser. Locations of bank accounts to
optimize float: an analytic study exact and approximate algorithms. Management Science.
23 (1977) 789-810.

[CGMH94] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,
Yannis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The TSIMMIS project:
Integration of heterogeneous information sources. In Proceedings of the 100th Anniversary
Meeting, pages 7–18, Tokyo, Japan, October 1994. Information Processing Society of Japan.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: To-
wards automatic data extraction from large web sites. In VLDB conference, 2001.

[DCD99] P. Dasgupta,P. Chakrabarti and S. DeSarkar. Multiobjective Heuristic Search.
Vieweg, Bertelsmann Professional International, Germany, 1999 (ISBN 3-52805-708-4).

114

[DG97] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’97, pages 109 – 116, Tucson, AZ, May 1997.

[DGL00] Oliver M. Duschka, Michael R. Genesereth, Alon Y. Levy. Recursive Query Plans
for Data Integration. In Journal of Logic Programming, Volume 43(1), pages 49-73, 2000.

[DH02] A. Doan and A. HaLevy. Efficiently Ordering Plans for Data Integration. In
Proceedings of ICDE-2002, 2002.

[DL97] Oliver M. Duschka and Alon Y. Levy. Recursive plans for information gathering.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
IJCAI, Nagoya, Japan, August 1997.

[F96] U. Feige. A threshold of ln(n) for approximating set cover. In Proceeding of the 28th
annual ACM Symposium on the Theory of Computing, pp. 314-318, 1996.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic information in data inte-
gration. In Proceeding of the International Conference on Very Large Data Bases (VLDB),
1997.

[FLMS99] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query optimization in the
presence of limited access patterns. In Proc. SIGMOD, 1999.

[FW97] Marc Friedman and Daniel S. Weld. Efficiently executing information-gathering
plans. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-
gence, IJCAI, Nagoya, Japan, August 1997.

[GGKS95] Donald F. Geddis, Michael R. Genesereth, Arthur M. Keller, and Narinder P.
Singh. Infomaster: A virtual information system. In Intelligent Information Agents Work-
shop at CIKM ’95, Baltimore, MD, December 1995.

[GHK92] W. Ganguly, S. Hasan and R. Krishnamurthy. Query Optimization for Parallel
Execution. In Proceedings of SIGMOD, 1992.

[GRZ+00] Jean-Robert Gruser, Louiqa Raschid, Vladimir Zadorozhny, Tao Zhan: Learning
Response Time for WebSources Using Query Feedback and Application in Query Optimiza-
tion. VLDB Journal 9(1): 18-37 (2000)

[H97] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing
Company, 1997.

[HC01] Theodore W. Hong and Keith L. Clark. Using Grammatical Inference to Automate
Information Extraction from the Web. In Principles of Data Mining and Knowledge Dis-
covery, Lecture Notes in Computer Science, volume 2168, pages 216-227. Springer-Verlag,
2001.

115

[HD98] Chun-Nan Hsu and Ming-Tzung Dung. Generating Finite-State Transducers for
Semi-Structured Data Extraction from the Web. Information Systems, 23(8):521-538, 1998.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Mor-
gan Kaufmman Publishers, 2000.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Op-
timizing queries across diverse data sources. In Proc. VLDB, 1997.

[IFF+99] Z. Ives, D. Florescu, M. Friedman, A. Levy and D. Weld. An Adaptive Query
Execution System for Data Integration. In Proceedings of SIGMOD, 1999.

[IG02] P. Ipeirotis and L. Gravano. Distributed Search over the Hidden-Web: Hierarchical
Database Sampling and Selection. In Proc. of VLDB, 2002.

[IGS01] P. Ipeirotis, L. Gravano, M. Sahami. Probe, Count, and Classify: Categorizing
Hidden Web Dababases. In Proceedings of SIGMOD-01, 2001.

[KLN+04] Subbarao Kambhampati, Eric Lambrecht, Ullas Nambiar, Zaiqing Nie, and
Gnanaprakasam Senthil. Optimizing Recursive Information Gathering Plans in EMERAC.
Journal of Intelligent Information Systems, Volume 22, Issue 2 (March 2004), Pages: 119 -
153, 1999.

[Kus00] Nicholas Kushmerick. Wrapper Verification. World Wide Web, 3(2):79-94, 2000.

[KW96] C. Kwok, and D. Weld. Planning to gather information. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, 1996.

[KWD97] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper Induction
for Information Extraction. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, 1997.

[Lev00] A. Levy. Theory of answering queries using views. SIGMOD Record, 2000.

[LK97] Eric Lambrecht and Subbarao Kambhampati. Planning for information gathering:
A tutorial survey. Technical Report ASU CSE TR 97-017, Arizona State University, 1997.
rakaposhi.eas.asu.edu/ig-tr.ps.

[LKG99] E. Lambrecht, S. Kambhampati and S. Gnanaprakasam. Optimizing recursive in-
formation gathering plans. In Proceeding of the International Joint Conference on Artificial
Intelligence (IJCAI), 1999.

[LKM01] Kristina Lerman, Craig A. Knoblock and Steven Minton. Automatic Data Ex-
traction from Lists and Tables in Web Sources. In Proceedings of the IJCAI 2001 Workshop
on Adaptive Text Extraction and Mining, Seattle, WA, 2001.

[LMK03] Kristina Lerman, Steven Minton and Craig Knoblock . Wrapper Maintenance: A
Machine Learning Approach. Journal of Artificial Intelligence Research, 18:149-181, 2003.

116

[LNRV03] Zoe Lacroix, Felix Naumann, Louiqa Raschid, and Maria Esther Vidal. Ex-
ploring Life Sciences Data Sources. In Proceedings of IJCAI’03 Workshop on Information
Integration on the Web, August 9-10, 2003, Acapulco, Mexico.

[Lowell03] The lowell database research self assessment. June 2003.
http://research.microsoft.com/∼ gray/lowell

[LPR98] Ling Liu, Calton Pu, Kirill Richine. Distributed Query Scheduling Service: An
architecture and its Implementation. In Special issue on Compound Information Services,
International Journal of Cooperative Information Systems (IJCIS). Vol.7, No.2&3, 1998.
pp123-166. 1998.

[LRO96] A. Levy, A. Rajaraman, J. Ordille. Query Heterogeneous Information Sources
Using Source Descriptions. In VLDB Conference, 1996.

[MMK01] Ion Muslea, Steve Minton, and Craig Knoblock. Hierarchical Wrapper Induction
for Semistructured Information Sources. Journal of Autonomous Agents and Multi-Agent
Systems, 4:93-114, 2001 .

[MSHR02] S. Madden, M. Shah, J. Hellerstein and V. Raman. Continuously Adaptive
Continuous Queries over Streams. In Proceedings of SIGMOD, 2002.

[Nau02] F. Naumann. Quality-Driven Query Answering for Integrated Information Systems.
Volume 2261 of LNCS, Springer Verlag, Heidelberg, 2002.

[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Integration of Heterogeneous
Information Systems. In VLDB Conference 1999.

[NK01] Z. Nie and S. Kambhampati. Joint optimization of cost and coverage of query plans
in data integration. In Proceedings of CIKM, Atlanta, Georgia, November 2001.

[NK04] Z. Nie and S. Kambhampati. A Frequency-based Approach for Mining Coverage
Statistics in Data Integration. In Proceedings of ICDE, 2004.

[NKH03] Z. Nie, S. Kambhampati and T. Hernandez. BibFinder/StatMiner: Effectively
Mining and Using Coverage and Overlap Statistics in Data Integration. In Proceedings of
VLDB, 2003.

[NNVK02] Z. Nie, U. Nambiar, S. Vaddi and S. Kambhampati. Mining Coverage Statistics
for Websource Selection in a Mediator. Proc. CIKM 2002.

[OV99] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems (2nd Ed).
Prentice Hall. 1999.

[PL00] Rachel Pottinger , Alon Y. Levy , A Scalable Algorithm for Answering Queries Using
Views Proc. of the Int. Conf. on Very Large Data Bases(VLDB) 2000.

117

[PY01] C. Papadimitriou and M. Yannakakis. Multiobjective Query Optimization. In
PODS 2001.

[Qia96] Xiaolei Qian. Query folding. In Proceedings of the 12th International Conference
on Data Engineering, pages 48–55, New Orleans, LA, February 1996.

[SACL79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price. Access path selection
in a relational database management system. In SIGMOD 1979.

[SAP96] M. Stonebraker, P. M. Aoki, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu.
Mariposa: A Wide-Area Distributed Database System. VLDB journal, 5:1, pp. 48-63,
1996.

[TPC] Transaction Processing Council. http://www.tpc.org.

[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data
sources with disco. IEEE TKDE, 10(5), 1998.

[UF00] XJoin: Tolga Urhan, Michael J. Franklin. A Reactively Scheduled Pipelined Oper-
ator. In IEEE Data Engineering Bulletin, 23(2), 2000.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost-Based Query Scram-
bling for Initial Delays. In Proceedings of SIGMOD, Seattle, WA, June, 1998.

[VN02] Efstratios Viglas and Jeffrey F. Naughton. Rate-based Qurey Optimization for
Streaming Information Sources. In Proceedings of SIGMOD, 2002.

[WMY00] W. Wang, W. Meng, and C. Yu. Concept Hierarchy based text database catego-
rization in a metasearch engine environment. In Proceedings of WISE, June 2000.

[YLUG99] R. Yerneni, C. Li, J. Ullman and H. Garcia-Molina. Optimizing large join queries
in mediation systems. In Proc. International Conference on Database Theory, 1999.

[Zipf29] George Kingsley Zipf. Relative Frequency as a Determinant of Phonetic Change.
Harvard Studies in Classical Philology, Vol. 40. pp. 1-95, 1929.

[ZL96] Q. Zhu and P-A. Larson. Developing Regression Cost Models for Multi-database
Systems. In Proceedings of PDIS, 1996.

[ZRV+02] Vladimir Zadorozhny, Louiqa Raschid, Maria-Esther Vidal, Tolga Urhan, Laura
Bright. Efficient evaluation of queries in a mediator for WebSources. In Proceedings of
SIGMOD, 2002.

BIOGRAPHICAL SKETCH

Zaiqing Nie will be joining the Information Management and System Group at the
Microsoft Research Asia as an Associate Researcher in May 2004. His research interests
include data integration, data mining, information retrieval, and data stream management.

He will be graduating in May 2004 with a Ph.D. in Computer Science from Arizona
State University. He received his Master of Engineering degree in Computer Applications
from Tsinghua University in 1998, and his Bachelor of Engineering degree in Computer
Science and Technology from Tsinghua University in 1996.

