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ABSTRACT

Internet information gathering is the process of gathering data from sources that include
those scattered over the Internet. Query optimization problems for Internet information
gathering are different from that of traditional databases due to the lack of knowledge of
the behavior of sources and a myriad of binding constraints that exist for many sources

over the Web.

Traditional System R style optimizers lose their efficacy when sources are spread across
the Internet with high access costs compared to secondary storage media. Such
optimizers cannot be used for Interret sources due to various binding restrictions and

guery capacities.

This research proposes a System R style optimizer that takes binding patterns and
restrictions that most Internet sources have. It considers both left and right linear
evauations along with bushy joins. The proposed algorithm assumes full knowledge of
statistics and generates a join order accordingly. However, in the absence of full statistics,

it degrades gracefully and maintains its improvement over previous algorithms.
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1. INTRODUCTION

The growing popularity of the Internet®, especially the World Wide Web? has made it a
prime vehicle for disseminating information. The number of structured (along with semi-
structured ones) information sources is increasing rapidly. Most of these sources have a
formbased Web interface and provide the user with information from a traditional
database being maintained. Even though each of these sources is structured and supports
high-level queries, the interaction with a multitude of sources is like surfing. The user
must consider the list of available sources, decide/short-list the ones to access and

manually combine the information obtained from such multiple sources.

An Information Gathering system provides a uniform query interface [Lev99a] for a
multitude of autonomous heterogeneous data sources. The sources in such an application
may be traditional databases, legacy systems or even structured files. The goa of a data
integration system is to free the user from having to find the data sources relevant to a
query, interact with each source in isolation, and manualy combine data from such
different sources. To provide a uniform interface, an information gathering system

exposes the user to a mediated schema which is a set of virtual relations (they are not

! internet: (abbreviation for internetwork) A set of computer networks, possibly dissimilar, joined together
by means of gateways that handle data transfer and the conversion of messages from the sending network
to the protocols used by the receiving network. [AHK+91]

Internet: The ollection of networks and gateways that use the TCP/IP suite of protocols. Many internets
exist besides the Internet, including many TCP/IP based networks that are not linked to the Internet (the
Defense Data Network is acase in point).

2 WWW akaWeb: A global hypertext system that uses the Internet as its transport mechanism. [AHK+91]

The Web isthe most popular part of the Internet, while the rest are FTP/Gopher/telnet etc.
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stored anywhere)- it is designed manually for a particular application. To be able to

answer queries, the system must also contain a set of source descriptions that specify the

contents of the source and the attributes contained in it and the corresponding constraints.

Figure 1.1 shows an example of a typical internet information gathering scenario. A
machine in the library storesrecords of Lost books and details of each Borrow transaction
in the secondary storage media. In a different building in the campus, the Sudent

information is stored in the Administration building.

University (Intranet)

Administration

Student

\ 4
Information < § Books
Gatherer (Internet)

Library (Machine)

Fig 1.1 Internet information gathering scenario
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An intranet connects the two buildings in the university. The library also has an internet

link to a Books database that could be located tens to thousands of miles away.

While many of the traditional database techniques may be applied to internet information

integration, some differences do exist.

Internet information sources are autonomous - exporting no statistics about
themselves, and hence their costs cannot be estimated easily. Access and transfer costs

may not be accurately estimated for the Books database accessible on the Internet.

Even when costs are known, Access and transfer times cannot be reliably estimated.
Hence even a plan that appears to be optimal might turn out to be sub-optimal if there

are unexpected delays in transferring the data from one of the sources.

Sources have a variety of processing capabilities - while one source might be a form
interfaced database another might be an unstructured HTML file. Even form

interfaced databases have additional types of constraints.

1.1. Source constraints

On the Internet, there are a variety of sources that have various constraints associated

with them [LKG99].

An ordinary HTML document needs a wrapper interface so that it may be
modeled as a traditional database. For any kind of query posed on such a source,
the entire file has to be retrieved regardless of the volume of information required,

and extraction of datais done localy.



4
Further, some sources have binding constraints that implies that some of the

attributes reed to be bound to a value. To illustrate, the schema for the Books

source may be

Books (isbn®, title, author, publisher, pages, price)

indicating that queries posed on this source need to provide a vaue for isbn to be

semantically correct.

1.2. Execution optimization

Information gathering consists of three stages

1 Plan generation Generate a source complete query plan

2 Plan optimization Optimize the above plan using subsumption, LCW and other

such information

3  Plan execution Execute the optimized query plan for optimality.

This research concentrates on the third phase of information gathering - plan execution.
One of the most important execution optimization strategies is to order the source callsin
a manner so that the corresponding costs are minimized. Even small differences in sub-
optimal partial join orders that constitute the final join multiply very rapidly as the

number of source accesses increases.
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There exist heuristics as well as systematic methods to find an optimal join order. Bound-

is-easier is a heuristic that uses naive heuristics in the absence of statistics to find the best
order. System R [ABC+76] style join order algorithms use statistics to more accurately
arrive at the optimal join order. However, they do not take binding constraints into
account. This research concentrates on developing a joinordering algorithm that uses

guery plans containing source statistics and takes care of binding patterns.

Access costs that represent overhead costs for an internet connection setup (as against
disk seek time for traditional databases) are one of the important costs for internet
information gathering. Bushy trees lend themselves naturaly to internet information
gathering by their inherent parallelism to cut down access time when possible by making
simultaneous access to sources. For this reason, the search space is expanded to add
bushy trees. An experimental setup with simulated sources where various parameters can
be changed is used to test the algorithm. Empirical data shows that the algorithm scales as
expected and is better than other comparable methods. Empirical data also validates the
assumption that searching a larger space of join order trees is paid off with a smaller

execution cost.



2. INTERNET INFORMATION GATHERING

Internet information gathering has to deal with different kinds of databases. Figure 2.1
shows an information gatherer than puts data together from different sources varying
from secondary storage media to internet databases. Traditional query optimization
algorithms are designed to work with localized databases. The issues related to such an
environment is very different from that of an internet one where databases are strewn
across the Internet. Databases stored in the same secondary storage device, or in multiple
devices accessible directly by the computer have comparatively lower (almost negligible)
seek and read times than the setup time to establish a socket connection and transfer data

in the case of databases across various networks.

Internet sources

Information
Gatherer b Intranet sources

Secondary Storage

Fig 2.1 Different sources for an internet database.



2.1. Binding patterns

While posing a query to a database, some attributes may be bound to a particular value
while some may not [LKG99]. Sometimes, the bound attribute may depend on the
availability of data or the query itself. However, quite often in the case of internet

databases, attributes may be required to be bound because of the inherent database

design.

The Books database requires isbn to be bound.

Student records stored in a university administration may require theid of the student

to be bound.

On the other hand, some sources may allow a richer set of queries than expected. For
example, a source might take multiple bindings (limited digunctive queries) for a
particular attribute. While disregarding such information does not affect the soundness of
a query result, optimality of a system is impaired if it doesn’'t take into account such
features of sources. Such limitations and features must be taken into consideration if an

optimal query plan is desired.

Examples:

yellowPages (LastNamef, FirstNamef, Zipf, Phoneb)
yellowPages (LastNameP, FirstNamef, Zipf, Phonef)

books(Titlef, Authorf, Pricef, ISBNP, Pagesf)
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The variations of having some attributes bound and some other free are called binding

patterns. In the example given above, yellowPages has two possible binding patterns. In

the first one phone is bound and denoted by ° while the second one has LastName bound

2.2. Access costs

A discriminating feature of internet information gathering is the wide range of access
costs of the sources involved. Access time is the overhead associated with getting data
from a particular source. Access cost is the unavoidable cost associated with accessing a
source without getting any data in return. For this reason, contribution of access costs to
the execution cost of a plan must be kept minimal in order to obtain an optimal solution.
Furthermore, access costs tend to be nonlinear as they are not proportionate to the

number of tuples transferred.

Databases available locally on secondary storage media like hard disks have very small
access time in the form of disk seek time. Those present across the intranet linked by
high-speed internal networks serving a smaller load have moderate access times. At the
far end of the spectrum are those sattered on the Internet where servers are used by a

much larger number of people and hence have very high access times.

2.3. Typesof internet databases

Databases accessible on the Internet exist in myriad forms. One of the most common and
most vishle are form interfaced databases. Usually in such cases, fixed queries are
written and a web page designed so that it can accept values for various attributes. The

result of such a query is used in further transactions. The server site usually limits queries
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that can be posed to such databases. Consider a book database with the following

schema:

Books (ISBN, Title, Author, Publisher, Pages, Price)

A query of the form

SELECT * FROM Books WHERE Author=""John Doe”

IS acceptable whereas

SELECT * FROM Books WHERE Pages>50

is acceptable not even though it is semantically correct. Even though Pages is an attribute
for Books, its value cannot be bound in queries posed on the relation. Such binding
patterns are termed Forbidden Binding Patterns. For the above Books example, Books

(ISBN, Title, Author, Publisher, Price, Pagesb) isaforbidden binding pattern.

Let us say that the design of the Books relation is such that it requires ISBN to be bound.

In such a situation, the possible binding patterns are written as

Books (ISBNb, Title, Author, Publisher, Price, Pagesf)

All binding patterns with the remaining attributes are any combination of Free or Bound

are feasible and not part of Forbidden Binding Patterns.

Some unconventional databases are also present that are in text form. Such databases do
not have any query processing capability. If needed to be queried, they have to be

transferred in full to the client site and a wrapper program parses the file and converts it
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into a database for internal use. Text databases usually need customized wrappers and are

aso inefficient.

2.4. Source statistics

Another important characteristic of internet databases is the lack of statistics regarding
their performance and data stored by them [LKG99]. It is not atrivial task to find out the
access and transfer times for such databases. Even when known, the fluctuations in
network connections can cause the statistics to vary more than that for databases stored in

secondary storage media.

Possibly the most common scenario is where nothing is known about an internet database
apart from the schema and binding restrictions. Sometimes, partia information may be
available. Information that SELECT * FROM Student WHERE Major="CS” returns fewer
tuples than SELECT * FROM Student WHERE Sex="M” might be easily available or

estimated.

On the other side of the spectrum are databases where al the statistics are known.
Corporate intranets are a prime example. Even for those sources for which no statistics

are available, probing and other methods can return a very good estimate.

Cost forms an important factor in a query optimization algorithm. A more accurate
estimate implies a better-informed decision made by the optimizer. Small errors in source
statistics may not affect the final outcome of a join order optimizer as the costs are
merely used to rank plans. It is very likely that the same order would have been produced

with small changes in source statistics. This indicates the accuracy of the statistics
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required by most join order optimization algorithms. Small changes in statistics for

internet databases are quite natura and common [AHO0O]. Because a high level of
accuracy is not needed, such changes do not usually change the optimality of the solution

produced by such algorithms.
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3. JOINORDERS

The number of permutations of ordering the join operations can provide many equivalent
aternatives that provide a sound solution with varying degrees of optimality. Finding an
optimal join ordering for a given query is the task of join order optimizers. Selecting the

optimal execution strategy for a query is NP-hard in the number of relations [IK84].

Consider the following query

SELECT StudentName

FROM Student, Course, Dept

WHERE
Student. id=Course.takenBy AND
Course.deptld=Dept.id AND

Student._Major=Dept. Id
The following figure illustrates equivalent join queries all of which are semantically
correct and yield the same results. However, depending on the attributes of the sources,

the corresponding costs may vary.
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Course Dept
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Fig 3.1 Equivalent join trees
3.1. Order affects costs

We will now show how order of ajoin that is commutative affects join costs. Assume P

and Q are two relations that have 10 & 100 rows each that take part in the join. Limited
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by binding constraints, a parallel access to both the sources may not be possible. Due to

such dependencies, they have to be accessed one at a time and the bindings from the first
source are used to query the second. Let a and t be the access and transfer time for the
sources. Access time refers to the setup (overhead) time incurred in using a source and

transfer timeis the rate at which the source produces data.

P? Q: SourceP isaccessed and 10 rows are extracted. For each of these rows, an access

must be made to Q to see if there exists a row that might participate in the join, the

maximum being 100. Hence the cost can be estimated as

Cost (P? Q):a+ 10t + 10a +100t

Q? P: Source Q is accessed and 100 rows are extracted. For each of these rows, an

access must be made to P to see if there exists arow that might participate in the join, the

maximum being 10. Hence the cost can be estimated as

Cost (Q? P):a+ 100t + 100a +10t

The cost difference between the above two aternate approaches is 90a. It can be seen that
P? Qisabetter dternativeto Q? P even though both will produce the same results.

There are only 2 alternatives possible for 2 sources. The number of alternatives increases
rapidly compared to the number of sources. The corresponding costs vary widely. This

underlines the need ard necessity for join ordering algorithms.



15
One of the fundamental assumptionsin searching a larger space of possible join ordersis

that the time spent in searching would be paid off in obtaining a better solution than what
would have been obtained searching a subset of the search space. In traditional databases,
with mostly localized databases, access and transfer times that constitute a large part of
execution cost are negligible. Hence, the difference in execution cost offered by using a
more optimal tree is not clearly visible. Thisis further suggested by the fact that the time
spent in searching a larger space might be much more than the time saved by a more

optimal query. The increase in processing time eclipses any increase in optimality.

Such differences could be magnified in the Internet information-gathering scenario where
access times are relatively much higher than those for traditional ones. Hence, there is a
need to search alarger space and come up with an execution plan as optimal as possible.
The time saved in access and transfer costs more than makes up for the time spent in

searching alarger space.

Query optimization is the process of producing a query execution plan that represents an
execution strategy for a given query. The plan so produced minimizes an objective cost
function. A query optimizer is usually seen being comprised of three components

[OV9l]:

1. Search space: Set of alternative execution plans that represent the input query

2. Cost modd: Predicts the cost of the given execution plan

3. Searchstrategy: Explores the search space and selects the best plan, using the cost

model
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3.2. Search space

Query execution plans are typically abstracted by means of operator trees that define the
order in which operations are performed. Join trees whose operators are either join or
Cartesian product characterize query optimizers. Permutations of join order have the most
important effect on the performance of queries. To avoid investigating a large search
space, query optimizerstypically restrict the size of the search space under consideration.
An important restriction is the shape of the join tree. Though considering only linear trees
drastically restricts the search space, bushy trees are useful for information integration

because of their inherent parallelism as mentioned in Chapter 1.

3.3. Join tree shapes

Different shapes of join order trees further increase the number of possible join orders. A
tree all of whose right nodes are base relations is termed left linear, and the one with all
left nodes as base relations is termed right linear. A tree that is neither of the above is
termed as a bushy tree. If a particular join tree shape has a feasible possible ordering, it
generates the same answers as another. However, they also have different implications

withrespect to access times and hence the final cost differs.



Right Linear Join Tree <

VAN
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Fig 3.1 Join Tree Shapes
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3.4. Sizeof the search space

Figure 3.1 illustrates various shapes for a join tree. For a left linear tree, there is only a
single possible tree shape. Any of the n relations can be assigned to each of the leaf nodes

in ntways. On the other hand, there are many possible shapes for a n-leaved bushy tree.

The number of possible bushy tree shapes is similar to the classical problem of the
number of parenthesizations P(n) of n multiplications. A sequence of n variables can be
split between the k™ and (k+1)% variables for any k = 1, 2 ,. . . n-1 and parenthesized

recursively.
rgl

Sn) =34 S(k)S(n- k) for n>1°
k=1

The above recurrence is the sequence of Catalan numbers®. Thus the value can be

calculated as

Sn) = C(n-1) where

cm= = g” :

n+1

QO

P =1

4 Among other things, the Catalan numbers describe the number of ways a polygon with n+2 sides can be
cut into ntriangles, the number of ways in which parentheses can be placed in a sequence of numbers to be
multiplied, two at a time; the number of rooted, trivalent trees with n+1 nodes; and the number of paths of
length 2n through an n-by-n grid that do not rise above the main diagonal.
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For each of the bushy tree shapes, there are n! ways in which n relations can be assigned

to the leaves. The number of possible join orders for bushy trees (which includes left

linear trees as well) is given by the formula:
né
P(n+D)=nl gﬁ 2
n g

For 8 relations, there are about 17 million join orders, of which about 40 thousand are | eft
linear trees. The brute force method of exhaustive search is a poor strategy for finding an
optimal join order. Traditional join order optimizers take a small hit in execution time of
the resulting order in return for a large decrease in search space by considering only left
linear trees. The degree of sub-optimality is not negligible in the Internet information
gathering scenario dominated by access costs. This is shown by the results of one of the

experiments conducted and the size of the search space empirically deduced.

3.5. Motivation for using dynamic programming

The most popular search strategy used by query optimizers is dynamic programming that
IS a systematic search method — it proceeds by building plans starting from base relations,
joining one more relation at each step until complete plans are obtained. Dynamic
programming builds all possible plans, breadth first, before it chooses the best plan. To
reduce cost, partial plans that are not likely to lead to the optimal plan are pruned at the

earliest stage.
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Dynamic programming is almost exhaustive- it searches through all the possible solutions

without actually considering all the nodes, and assures that the best of all plans is found

and incurs an acceptabl e optimization cost.

The main objective of my research is to develop and implement a join ordering algorithm
based on the existing System R query optimization algorithm that is more suited for
Internet information gathering. The algorithm must ensure that binding constraints are

taken care of and that it searches bushy trees as well.

My research aso includes implementation of a system to test the new agorithm with
multiple sources and vary access and transfer times along with the distribution of data
and analyze the efficacy of the algorithm with respect to other join ordering algorithms. It
is expected that as number of sources increase, the difference between the algorithms will

be more pronounced.
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4. JOIN ORDER OPTIMIZATION

Present day join order optimization algorithms for Internet information gathering assume
sources with no available statistics. This is often true for most sources present on the
Internet. However, it is often the case that partial statistics may be available or can be
obtained easily. While the exact selectivity indices of tables stored in internet databases

may not be known, it is quite reasonable to assume for the relation

Books (ISBN, Title, Author, Publisher, Price, Pages)

binding Author will yield smaller number of tuplesthan Publisher.

4.1. Greedy approach

To utilize this information available to us, we developed a greedy algorithm [KG99] that
divides the set of binding patterns feasible for a source into those that make the source
generate high traffic- High Traffic Binding Pattern [HTBP] and those that do not. It
should be noted that a source might be included in HTBP for one of its binding patterns,
not necessarily all. The reason for this is that it's the binding that decides the number of

tuples returned as a result, not the source by itself.

The greedy algorithm uses minimal source statistics to order source calls. It attempts to
access sources with more feasible access patterns such that they do not belong to a
HTBP. The idea behind this approach of dividing the set of sources into two types is that
while full statistics might not be available for most internet sources, partial information is
usually available and if not, can be estimated in most cases. With each selection of

source, the list of available bindings increases and thus the number of feasible access
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patterns also increases. This ensures the termination of the algorithm. If a feasible non

HTBP is not found for an iteration, the most general binding pattern is chosen. This keegps

the algorithm moving.

4.2. System R style optimizer

A System R style optimizer performs a static query optimization based on the exhaustive
search of the search space. The input is a list of sources to be called along with their
binding patterns resulting from the query rewritings. The ouput is an execution plan that
implements the optimal join tree. The optimizer assigns a cost to every candidate tree and
retains the one with the smallest cost. The candidate trees are obtained by permutation of
the join orders of the n relations of the query using relationa agebra rules. The set of

aternative strategies is constructed dynamically such that only the cheapest one is kept.

The algorithm consists of two steps:

1. The best access method to each individual relation is computed.

2. For each relation P, the best join ordering is estimated, where P is first accessed

using its best single relation access method.

The cheapest ordering becomes the basis for the best execution plan.

4.3. Internet System R (ISR) join ordering algorithm

Most Internet information sources do not expose statistics about themselves. However,
more often than not, approximate statistics can be estimated for such sources. For

example, Amazon.com has possibly more books under a single Publisher than for a given



23
Author. This implies that binding Author will return fewer tuples than from Publisher. A

dightly different variation of information integration can be for corporate databases that
are kept at different locations whose exact statistics are easily available. In such cases,
optimization strategies that take advantage of such information will be more optimal than

those that don’t.

The Internet System R algorithm optimizes source calls using statistics that include the
access and transfer cost for each source and the cardinality (value count) for each
attribute contained in a particular source. The algorithm uses source descriptions and
builds plans from atomic plans (containing a single source) and prunes nortviable and
invalid plans thereby cutting down on the search space. In contrast with query
optimization for traditional sources, execution is costlier in terms of time compared to the
optimization process itself. So it makes more sense to spend more time in coming up with
a more optimal plan than passing the cost to the execution phase. My algorithm modifies
the traditional algorithm in such away as to explore bushy trees instead of just left linear
trees. While this process increases the search space, the resulting join order would be
more optimal and the time spent in searching an expanded space would be paid off by the

lowered execution cost.
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INPUTS

costs;

Initialize NODE with
PP = nil; Bindings = {f}; Cost=0.

IF S has a corresponding BestPlan
return the corresponding join order
ENDIF

REPEAT
FOR 1 = 1 TO number of feasible leaf nodes

FOR j =1 TO g(?'% DO

' g

LET LeftSubGoal = jth element in ?Q@

I'g

LET RightSubGoal = S - LeftSubGoal

update BestPlan
ENDIF
NEXT j
NEXT i

return join order of BestPlan
END.

S [1..m]: Array of all subgoals expanded w.r.t binding patterns;
Associated data structure along with above which will help calculate

Recursively call this algorithm with LeftSubGoal and RightSubgoal
CurPlan = Make a new plan by joining the above resultant plans

IF 1t has a lower cost than current BestPlan THEN

UNTIL no child nodes are generated in an entire iteration

Fig 5.1 Internet System R algorithm

Initialy in the algorithm outlined in Figure 5.1, al feasible sources - those that can be

caled using the available initial bindings are listed as atomic plans. Thus, the first

iteration makes sub-plans of size n = 1. The next iteration makes all plans for n = 2 with

all possible combinations, ensuring that only feasible join ordered plans are built. Both A

? Band B? A areconsidered, thus increasing the search space to include left linear as
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well as right linear trees. Right linear trees need to be considered in the intermediate

stages of the working of the algorithm as bushy trees may contain partia right linear

trees. Further, when bushy joins are possible®, the next iteration of subplans includes

those of type (A? B)? (C? D) in contrast with the traditional agorithm that would

consder (A ? B) ? C)? D). For each join, the statistics are updated and the

corresponding join costs are also calculated. At the final iteration, when all the sources
have been taken care of, the search tree consists of plans of size n = m where mis the
number of sources given as input to the algorithm for ordering. The plan with the least
cost at this iteration represents the optimal join ordering for calling the sources in an

information gathering strategy. A detailed pseudo-code follows.

4.4. Internet System R pseudo-code

The program in Figure 5.2 takes as input the list of all subgoals along with statistics about
the corresponding access and transfer cost per tuple; cardinality of the relation
corresponding to each attribute (required for calculating join sizes); binding restrictions
which describe the various bindings require to make a source call. The bindings available

from the query are also given as the input.

® There must be at |east 4 nodes to form a bushy tree.
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GLOBAL

SubPlans []
AvailBindings[]
ReqdBindings[]
Attrib[]

Access
xfer
cost

plan

Array of all subgoals with the following associated data
Array of available bindings before execution of this plan

Array of variables which require bindings

Array of value counts V for each attribute

Access cost
Transfer cost for each tuple
Cost of transferring all the tuples

Initialized to unary plan

/* Array of all optimal/best plans for corresponding subgoals

initialized to all feasible SubPlans*/

AllBestPlans[]: Array of aggregates containing the following

Plan: Join tree describing an optimal way of calling the given sources.

Goals[] : Array of unordered source calls

PROCEDURE OptPlan(Q, QBindings)

IF ExistsOptimalPlan(Q) THEN BEGIN

Return(Plan(Q)) /* search for Q and return the corresponding plan */

END

initialize BestPlan with

/* empty array of variables which require bindings */

AvailBindings := NULL




/* empty array of variables which don"t require bindings */

ReqdBindings := NULL

Access = 0
xfer := 0
cost = 8

Subgoals := @

plan := NULL

// Try all n sized subplans for bushy joins

FOR i := 1 TO |Q]/2 DO BEGIN

FOR j := 0 TO g‘?'% DO BEGIN

5
LeftSubgoal := Combination(Q, i , j)

RightSubgoal := Q — LeftSubgoal

PlanLeft := OptPlan (LeftSubgoal,QBindings)
RightBindings := QBindings U PlanLeft._AvailBindings

PlanRight := OptPlan (RightSubgoal, RightBindings)

CurPlanl := Join (PlanLeft, PlanRight)

CurPlan2 := Join (PlanRight, PlanLeft)

IF CurPlanl
BestPlan

END

IF CurPlan2
BestPlan

END

.cost < BestPlan.cost THEN BEGIN

:= CurPlanl

.cost < BestPlan.cost THEN BEGIN

:= CurPlan2
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END
/* Reuse this for successive levels */

AddPlan (BestPlan)

return (BestPlan)

END

PROCEDURE Join (Left, Right)

initialize a plan New whose cost := 8

/* Check if feasible w.r.t. binding patterns */
IF Left.ReqgdBindings = @ AND Right.ReqdBindings ? Left._AvailBindings) THEN
BEGIN
New.Plan := Left_.Plan » Right.Plan;
New.f = Left.f U Right.f U Right.b

New.b = @

New.subgoals := Left._subgoals U Right.subgoals

/* Estimate size of join */

New.size := Left.size * Right.size

FOR each join attribute a; between Left & Right DO BEGIN
/* V (R, a) returns the value count for attribute a of relation
R,that i1s, the number of distinct values relation R has in attribute
*/
New.size := New.size / max(V(Left, ai), V(Right, a) )

END
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/* Access and transfer cost from mediator is 0 */
New.access = 0
New.transfer = 0
/* For both Left and Right subplans
IT a subplan is unary, it will have non-zero access and xfer costs
but cost=0
IT a subplan is non-zero, then its access and xfer costs will be
zero but its cost will be non-zero
In other words, in the expression below, one of the parts (on each

line) will be non zero */

New.cost := Left.cost + (Left.access + New.size*Left.transfer)+
Right.cost+ (New.size*Right.access + New.size*Right.transfer)
END

END

PROCEDURE Combination (Goals, n, i)
/* Return the ith value from all n sized combinations from Q */

END

PROCEDURE IsOptimal (Goals)
/* Return TRUE if a corresponding plan for Goals exists in AllBestPlans */
END
PROCEDURE Plan (Goals)
/* Returns the corresponding plan for Goals from AllBestPlans[] if found,
NULL otherwise */
END
PROCEDURE AddPlan (Plan)

/* Add Plan to the array of AllBestPlans[] */
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END

Fig 5.2 Internet System R pseudo code

A subPlan is made for al possible binding patterns available for a particular source
though some of these subPians may not be feasible. All the feasible subPlans are added to
the array of AllBestPlans that maintains a mapping of the best plan found for a set of

source calls and the corresponding plan that isajoin tree.

Given a set of source cals to be ordered, the function optplan first checks to verify if an
optimal plan is present aready. If so, it merely returns the corresponding plan from
AllBestPlans. On the other hand, if an optimal plan is not found, it tries to split the given
set of sources and check if an optimal plan exists for a subset of the sources to be
ordered. While the traditional System R optimization algorithm considers all subsets of
size n-1, the proposed algorithm considers all subsets of size n-1 through 1 (The loop
count1 TO |Q|/2-1 isto avoid expansions redundant due to symmetry). For each subset
thus obtained, all combinations are considered and the function is called recursively for
both the subsets. A join is considered for both the right and left linear trees, though in

many cases both might not be applicable due to binding restrictions.

Two subplans may be joined if the left subplan is executable using the bindings available
currently, and the right subPlan is executable using the bindings available after the
execution of the left subplan. If these criteria are satisfied, joining the left and right
subplans makes a plan. The free attributes of the new plan are the union of the free

attributes of the left and right subPians and the bound attributes of the right subPlan. The
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new plan so obtained is executable by itself, and hence its bound variable set if the null

set. Thisimplies that it may participate in joins with other subplans where it occupies the
left side. An estimate of the join size is made using a standard heuristic and the access

and transfer costs of the new subplan are calculated using a weighted average.

When no more sources to be ordered are left, the procedure returns with a BestrPlan that

contains a bushy tree as its attribute that is an optimal one.

4.5. Modificationsto System R style join ordering algorithm

Splitting n sources into 1 and nr1 sources is a trivial task when there are no binding
restrictions. For n sources that have some binding restrictions, the join of the partial plans
obtained by the splitting them into 1 and n-1 is not aways sound. Because of the binding
restrictions, new bindings available for the right subplan generated by the left one have to

be factored in along with those possibly available from the query itself.

Consider the following relations corresponding to the University information gathering

scenario described earlier.

Books (ishn®, title, author, publisher, price, pages)

Sudent (id°, firstName, lastName)

Borrow (studentld, isbn, datel ssued)

Lost (isbn)

The query to find al the books that are lost by the student is
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SELECT *

FROM Student, Books, Lost, Borrow

WHERE Borrow. isbn=Lost.isbn AND Books.isbn=Lost.isbn AND Borrow. id=Student.id

We need to order the join for Sudent ? Books? Borrow ? Lost such that the cost

incurred is minimal. This query would make the call

ISR (Books, Student, Borrow, Lost)

One of the many ways this call can be split is ISR (Student, Borrow, Lost) ? ISR

(Books). Even though 1SR (Books) does not receive its prerequisite binding from the

guery, the above call is valid because the left side provides the required bindings.

Modifications to the algorithm aso include those to search a larger space of join trees
additionally containing bushy and right linear trees. Right linear trees are a non-trivial
reversal of join order at each stage - taking care that the required bindings for the right
node are satisfied properly. Inclusion of bushy trees in the search space involves addition
of subplans instead of aomic sources while the join tree is built. An inherent and further
change necessitated is to identify possible areas of symmetry and prune plans that belong
to the same equivalence class. Instead of adding one source to the base atomic plan,
attempts are made to add combinations of partial plans of varying sizes. This is obtained

by a combinatorial generator that internally keeps a combination of sources and provides

the set of sources for the next iteration. The call 1SR (Student, Lost) ? ISR (Books,
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Borrow) is an example of how bushy trees are negated by addiction of non-atomic

partial plans.

The problem of ensuring that bindings from one side of the join is propagated to the other
side is further complicated when n sources are split into n-k and k sized sets. Of utmost
concern is the large number of such possibilities. For each such possible join, binding
requirements are tested at the earliest possible instant to prune illegal trees as high up as

possible. This helps in effectively cutting down on their child nodes as well.

The call ISR (Student, Lost) ? ISR (Books, Borrow) is not vaid because the

bindings required for the left side are not provided by the query and hence is pruned

without further expansion.

Annotated query plans are used that contain information about sources including but not
limited to access and transfer costs and selectivity indices of the attributes for each of
them. Every time a join is made between two sources resulting in a partial plan, this
information has to be updated so that the new pseudo source has statistics that accurately
reflects a weighted average of the sources it is composed of. The access and transfer costs
of the non-atomic source thus formed are O because there is no overhead for accessing
materialized views. The size of the intermediate join is calculated using the selectivity
index of the join attribute. Selectivity index of the join attribute in the newly formed
partial plan is the weighted average using the sizes of the participating number of tuples,
while those of other attributes remains the same assuming ndependent attributes and

uniform distribution of values.



Consider the following two sources:

Dept (deptld, name, chair, mailCode)

Sudent (id, firstName, lastName, deptid, year)

Assume the following statistics for Student and Dept sources:

Statistics Dept Student
Access 100 10
Transfer 10 2
Size 10 50,000
Vgeptid 10% 5%
Cost 0 0

The statistics for Dept ?  Student are calculated as follows:

Statistics

Dept ? Student

Access

Transfer
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Statistics Dept ?  Student

Size Size(Stude nt) * Size(Dept)
max(V(Stud ent, deptid), V(Dept, deptld)

_ 50000*10
max(2500,1)
Cost 100 + 10* 10+ 10 * 10 + 50,000 * 2 = 100,300
V deptid 10%* 10 + 5%* 50,000 _ 5%
10+50,000

The modified algorithm also has to take care of binding constraints and consider a
different set of atomic and compound sources as and when newer bindings become
available from previous joins. This means that the pool of eligible sources is dynamic
instead of being static. One of the attributes of an annotated source and the resulting
annotated plan is the list of bindings that they provide. As the plan is being built, the
associated bindings are updated dynamically. While partitioning the set of sources into
different sets, bindings that are provided by the left node to the right have to be accounted

for, and also propagated down to the lower nodes.

4.6. An illustrative example

The ISR agorithm is better illustrated with an example. To find all the books that are lost

by a student, we need to order the join for Sudent ? Books? Borrow ? Lost.
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To join the four relations and obtain answers to the required query, the algorithm is called

as follows:

ISR (Student, Books, Borrow, Lost)
ISR (Student, Books, Borrow)? ISR (Lost)
ISR (Student, Books, Lost) ? 1SR (Borrow)
ISR (Student, Lost, Borrow) ? ISR (Books)
ISR (Books, Lost, Borrow) ? ISR (Student)
ISR (Lost) ? ISR (Student, Books, Borrow)

ISR (Borrow) ? ISR (Student, Books, Lost)

+SR—(Students—Books)-?—SR—(LestBerroew)
ISR (Student, Borrow) ? ISR (Books, Lost)
7SR (Books, Lost) ? ISR (Student, Borrow)

The above expansion shows possible join trees that may constitute the search space for

the given set of sources. Many join orders are not possible semantically due to binding

congtraints either at the immediate level or the succeeding level. ISR (Books) ? ISR
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(Student, Lost, Borrow) is not feasible because of the binding requirements on the

isbn attribute for Books. Even the ones that are sound at the first iteration level may not

be feasible after further expansion. The correct partial join tree for 1SR (Books,
Borrow) ? ISR (Student, Lost) is not feasible at successive levels because 1SR

(Student, Lost) does not have any feasible child nodes.

Even though theoretically a large number of join orders are possible when taking bushy
trees into consideration, binding constraints cut down on the number drastically. The

number is even smaller due to pruning of sub optima partial join order trees. 1SR

(Student Borrow) ? ISR (Books Lost) isapossible candidate for pruning compared

to ISR (Student, Lost, Borrow) ? ISR (Books) because Books is accessed

relatively fewer number of timesin the later order and is thus likely to be less costly.

It can be seen that there is a large number of child nodes at each stage many of which are
still lega but possible sub-optimal. The above partial expansion illustrates this feature.

Because access costs form a large portion of execution cost, it is easy to see that one of
ISR (Student, Borrow) ? ISR (Books, Lost) Or ISR (Books, Lost) ? ISR

(Student, Borrow) produces the optima join order. High access cost for Books

coupled with the small number of tuplesin Lost (compared to Borrow) means that

(Books ? Lost) ? (Student ? Borrow)

is likely to be the solution returned by the algorithm.
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5. IMPLEMENTATION & EVALUATION

A redlistic evaluation of the ISR agorithm would involve usage of form-interfaced web
databases and perform tests on them. Though such an evaluation would possibly serve as
a good demorstration - not al run time conditions can be tested out. Changing the
selectivities of the data might not be possible in case of external web databases and not

feasible for internal databases for each run of experiments.

The agorithm has been implemented in Java 2 running on Sun Solaris 5.7 though some
of the experiments were also run on a Pentium 111 933 MHz PC running Windows 2000.
Java was chosen as the language for implementation due to the abundant standard API
methods available to prototype a system quickly. Sources were implemented as
simulations whose behavior could be set while instantiating. With such sources, it is aso
possible to model an increasing number of sources without giving much attention to the

actual semantics of the joins.

Experiments were run on the system to evaluate the performance of the agorithm.

Specifically we attempted to test the following hypotheses:

1. It isreasonable to expect an exponential increase in processing time for ISR. We
are more interested in the total cost of join order optimization and empirical tests

can show the difference in the costs of the algorithms under scrutiny.
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2. Bindings available for some of the attributes decide the number of nodes to be

expanded and checked before they are possibly pruned. A set of sources with

different placement of bindings was used to empirically show this relationship.

3. As has been mentioned before, not all sources have known statistics. Information
gathering often involves sources about which no statistics are known and a
scenario where al statistics are known is not common. Graceful degradation of

the algorithm due to lack of statistics was also tested for with empirical data.

5.1. Access and transfer times

A fundamental assumption for internet information gathering is that access and transfer
times are higher than those of traditional databases. Further, access time dominates
transfer time for most sources. Access and transfer times of a source can be calculated
though they are not directly known. Get the total time required t1 & t2 for downloading

two different file sizes s1 & s2. Considering transfer of each byte as a transaction

a+t.sl=tl
att.s2=12
Solving the above two simultaneous linear equations we can calculate the two unknown

variables. Further, when we have a set of values, transfer time t is the slope of the graph

and accesstime a is the y-intercept.
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Fig 6.1 Access and transfer times®

A Pentium 111 933MHz PC running Windows2000 was set up as a local (intranet) source
and populated with about 20 files of sizes varying from 50KB’ to 3MIB8. The larger files
were copies of files downloaded from an Internet source®. The Internet connection speed
was a T1 line with a typical speed of 500kbps. For each file, the average time taken over

4 runs was recorded. The same was repeated for 6 files from the origina source. The

® The small undulations towards the top-right corner for larger file sizes is possibly due to the garbage
collector mechanism of the Java Virtual Machine.

" Files are jpeg encoded images stored at http://tsangpo.eas . asu. edu/Photos
8 Files are movie files stored at http: //tsangpo.eas.asu.edw/Ads

® http://dvsl.dvlabs.com/adcritic which isthe storage server for adcritic. com



41
graph in Figure 6.1 was plotted to see the relationship between file size and

corresponding time taken. Thick solid lines represent the actual readings while the dashed

lines represent the trend line for the graph.

From the equation formed, we deduce that:

1. Transfer time is amost constant at 25ms/KB for both sources. This shows that in
the absence of any network fluctuations in the 40 minutes that the experiment
took to run to completion the transfer time remained amost constant for both the

Sources

2. Access time for the intranet source is significantly on the lower side at 92ms

while that for the externa site is about 5 seconds!

This confirms that access costs are indeed more than transfer costs and form a significant

portion of the execution cost for ajoin.

5.2. Increasein planning cost offset by decrease in total cost

The optimizer does not always have to consider many of the large number of possible

bushy join orders.

A particular join may not be possible because the binding requirements of both

the participating sources are not met.

A partia tree might be pruned in the presence of a more optimal shape or order.
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In a redistic scenario, there are very few legitimate bushy trees from the vast

original search space of all bushy join trees.

This decreases the penalty associated with searching bushy join orders as well for amore

optimal join order than that produced by searching left linear trees alone.

To evauate the belief that realistic sources would not vastly increase the search space as
expected and put a big performance penalty on ISR, 10 sources were created with the
ratio of access to transfer time varying from 8 to 512. Each of the sources had varying
number of attributes and corresponding selectivity indices chosen from a range of 8% to
64%. Sources were added incrementally to the optimizer and the execution cost of the
plan produced was calculated using the given statistics. Planning cost was recorded as a
measure of nodes expanded because it is independent of network fluctuations and

processor |oad.

Total cost for each data set was cal culated by the weighted addition'® of the planning and

execution costs.

10 A weight of 100 was used which isin tune with current processor and network speeds.
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The graph in Fig 6.2 shows that even though the ISR agorithm takes more time in

planning due to the increased search space, the execution cost of the plan produced and
hence the total costs are significantly lower than those produced by traditional System R.
This confirms our hypothesis that ISR has a larger search space than that of traditional
System R, but not as large as theoretically possible because of pruning of sub-optimal
and illega plans at their onset. It also shows that in spite of a marginally larger search

gpace for ISR, lower execution cost pays for the dight increase in planning cost.
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Fig 6.2 Planning costs for System R & Internet System R algorithms



5.3. Position of bound attribute matters

The search space expands as more sources are added and contracts as more binding

constraints are added that deem many partial plansillegal. The size of the search space is
not the same even within a set of sources for a given number of binding constraints. For a
given set of sources and number of binding constraints, size of the search space depends
on the interaction between the sources and their attributes. This is shown in the graph in
Figure 6.3 where even though there is only one bound variable amongst all sources given
to the optimizer, the number of nodes expanded varies. This verifies the hypothesis that

number of nodes expanded is a non-trivia function on the number of bound variables.
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Fig 6.3 Effect of placement of a bound attribute amongst different relations
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5.4. Graceful degradation

The Internet System R style join order optimization algorithm proposed in this thesis
assumes that al the required statistics are either available or can be easily found using
various probing techniques. However, this may not always be possible or feasble. In
such scenario, the optimizer has partial statistics and cannot fully estimate the
intermediate join sizes and make the correct decisons. To measure the degree of
impairment caused by lack of statistics, a set of 4 through 9 sources was given as input to
the optimizer. The performance of the optimizer was contrasted with that of the greedy
algorithm described in section 5.1. The greedy algorithm does not use any statistics and is
run only for sources with no available statistics and was taken as the base for comparison.
In the next run, a set of statistics were masked out and the performance degradation was
recorded. The algorithm loses out in the absence of any statistics where it degenerates
into a pure brute force method of searching and has to go through all possible feasible
permutations. The graph in Fig 6.4 plots the improvement of 1SR over greedy algorithm
as more statistics are given and shows that the optimizer degrades gracefully as less data

is made available to it.
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Fig 6.4 Graceful degradation of Internet System R with partial statistics
5.5. Summary

Even with a high speed T1 connection to the Internet, access costs remain an important
bottleneck and need to be eliminated as much as possible for an optimal execution. While
a large number of solutions are theoretically possible, the search space is not as large
because of binding restrictions that eliminate many possible partial plans. Dynamic
programming further eliminates partial plans that will result in sub-optimal plans before
they can generate full plans. Both these methods only reduce the difference between the
planning cost of traditional System R and ISR agorithms — ISR ill remains
computationally more expensive. The picture changes when execution cost is taken into
account. High access costs compared to fast processors result in an overall lower cost and

more optimal solution for Internet System R style join optimizer. Planning time is a non
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trivial function of the number as well as position of bound attributes. Finaly we show

that it is not necessary for the new agorithm to have the full array of statistics. Even with

partial statistics, it maintains its performance improvement over previous methods.
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6. RELATED WORK

The traditional method of ordering sub-goals is to use the "bound-is-easier” assumption
that states that sources with more number of corresponding bound attributes tend to
return fewer tuples. While such a heuristic is acceptable in the absence of any
information about source statistics, it may lead to sub-optimal plans in some cases. This
is so because the selectivity of each attribute is not uniform and the number of tuples
returned is dependent on this information. For example, a student relation will return
fewer tuples if Major is bound rather than Year. In mediated schemas where each tuple
obtained from the first relation is used to query the next source, the number of accesses
can increase tremendoudly if the source returning higher number of tuples is accessed
first. In this example, a source that takes a binding on Year will produce more tuples than

one that binds Major.

Florescu, Levy et a in [FLMS99] propose an algorithm similar to the System R style
optimizer but there is no explanation of the how the cost metric is arrived at- though it
provides a better treatment for the analysis of the search space. As each sub-plan is added
to the bag of optima subplans, a check is made to verify if there exists a plan aready - a

selection over which would yield the new subplan being added.

The size of the search space is the number of complete query execution plans. Thissizeis
more if it includes partial plans as well that may not lead to a complete plan. The bottom
up approach used by [FLMS99] considers partial plans as well and has a larger search
gpace. In contrast, my algorithm proceeds top down and partial plans that do not lead to a

complete query execution plan are never considered.
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To improve response time of the algorithm in [FLMS99], a redundant best-first plan is

generated before the System R agorithm runs to completion. This contradicts the verified
hypothesis that planning time is not as high as expected due to pruning of illegal and sub-

optimal partial plans.

Another set of strategies to handle unpredictable statistics is to push the optimization
techniques to the actual execution stage. Some optimizers generate a seemingly optimal
plan and use feedback to further modify it with respect to run time behavior. At the other
extreme, some optimizers generate a plan that may not necessarily be optima and
perform all the optimization at run-time. The mid-query optimization algorithm by Kabra
and DeWitt in [KD98] emphasizes that collection of statistics is a big overhead and must
not be done frequently. They identify stages of the execution where statistics should be
collected and also use it for dynamic resource alocation. Urhan, Franklin et al. in
[UFA98] concentrate on initial delays in their agorithm for cost based query scrambling
making the assumption that access costs are much higher than transfer costs. It does not
take into account the possible change in source transfer times or selectivities of the
resulting data. By making the assumption that the run time environment is amost
unpredictable, Avnur and Hellerstein in [AHOQ] propose a continuous query optimization
algorithm that groups sources into eddies (similar to fragments as mentioned by Levy in

[Lev99]) and the reordering takes place within those.
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7. CONCLUSION AND FUTURE WORK

System R is a popular algorithm for optimization for traditional databases. It falls short
for the newer Internet based databases and pseudo databases. The Internet System R join
order optimization algorithm presented in this thesis overcomes the shortcomings of the
origind System R style optimizer so that it can be made applicable to Internet
information gathering. Binding patterns pose a problem to evaluating partial join trees as
the binding requirements have to be met before calculating a join and estimated when
dividing the set. The optimizer has more statistics available to it and it uses them to the
best advantage while calculating and estimating intermediate relations ard partial joins.
Because the statistics so garnered are merely used to order the sources and arrange them
in the join tree, it is not prone to dight changes in source dtatistics. When there is a
multitude of sources with varying levels of available statistics, the optimizer degrades

gracefully as less data is made available to it.

The algorithm presented addresses one of the open issues in query optimization for
internet information gathering. While the algorithm is resilient to small changes to source
datistics, the plan produced will be substantially sub-optimal if there are large changesin
the source behavior. Some sources may be slower on a particular day and have higher
access times than normal. Changes to my algorithm with run time adaptivity built in
would produce optimal solutions and be less prone to erratic source behavior. It may also
happen that the unavailability of a source be discovered at run time. An approach that
combines query planning and selection of sources along with execution optimization can

solve this problem by producing alternate solutions at run time.
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The presented algorithm penalizes all sources if some of the sources have less available

gtatistics by ignoring any information that is not available for all sources. In the case
when varying levels of dtatistics are available, it is not a trivial task to estimate the
unavailable statistics of the remaining sources. Assigning average values for unavailable
statistics may not be a good heuristic when very few sources have available statistics.
Assigning best or worst values unnecessarily penalizes some of the sources. Such an
approach can produce less optimal solution than that possible by using the available data
to the best possible extent. More involved heuristics that can take into account the

uncommon information available will produce more optimal results.
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