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ABSTRACT

In an environment of distributed text collections, the first step in the information

retrieval process is to identify which of all available collections are more relevant to a given

query and which should thus be accessed to answer the query. This thesis addresses the

challenge of collection selection when there is full or partial overlap between the available

text collections, a scenario which has not been examined previously despite its real-world

applications. A crucial problem in this scenario lies in defining and estimating the over-

lap between text collections. The collection selection approach presented here solves these

issues by approximating the overlap as the similarity between sets of results returned by

the collections. Collection statistics about coverage and overlap are then gathered for past

queries and used for new queries to determine in which order the overlapping collections

should be accessed to retrieve the most new results in the least number of collections. This

thesis contains an experimental evaluation which shows that the presented approach per-

forms consistently and significantly better than the Collection Retrieval Inference Network

approach (CORI), previously considered to be the best collection selection system.
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CHAPTER 1

Introduction

1.1. Background

1.1.1. Single-source information retrieval.

Traditional information retrieval techniques concentrate on solving the problem of finding

which documents could be relevant to a user query. The emphasis there is on pinpointing

the most relevant documents present in a single – usually very large – set of documents, or

collection. News websites (e.g. CNN [3], The New York Times [17]), online encyclopedias

(e.g. Encyclopedia Britannica [7], Columbia Encyclopedia [4]), and scientific bibliographies

(e.g. ACM Guide [15], ScienceDirect [13], IEEE Xplore [10]) are all examples of keyword-

based information retrieval systems which perform in the context of a single collection. In

fact, perhaps less intuitively, even online search engines such as Google [8] and Yahoo [18]

can be categorized as information retrieval systems searching through a single collection.

The collection may be the set of pages available on the Internet in the case of web search

engines, and proprietary content in the case of news, encyclopedia, and some bibliography

websites.

The general approach used by these systems to identify relevant documents is to

analyze a query in terms of its keywords and use term frequencies and document frequencies
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obtained from the collection to determine which document in the collection is most similar

to the query content [20]. Of course, in addition to simply comparing the contents of the

document with the query in terms of keywords and frequencies, some systems take advantage

of the environment and properties of the collection and compute other types of rankings

which influence the final ordering of documents retrieved and returned to the user. For

example, Google uses its PageRank algorithm to take into account not only the frequency

of the query terms occurring in a page but also the popularity of each page [42].

1.1.2. Multi-collection information retrieval.

A slightly more complicated scenario than the single-source environment occurs when a

user wishes to query several collections simultaneously. The challenge of retrieving relevant

documents from a group of collections naturally involves information retrieval techniques

as described in section 1.1.1. However, having several potentially useful collections adds

a distributed1 aspect which must be solved prior to any actual retrieval of information.

Unless the retrieval system intends to search every information source at hand – which of

course would not be particularly efficient – it must indeed choose which collection or subset

of collections to call to answer a given query. This particular process is generally referred to

as collection selection. This is especially important because redundant or irrelevant calls are

expensive in many respects: in terms of query execution time, quality of results, post-query

processing (i.e. duplicate removal and results merging), network load, source load, and also

when some sources ask for access fees. Naturally, as the number of collections increase,

effective collection selection becomes essential for the performance of the overall retrieval

1
Distributed simply refers to the fact that the information is spread over several collections; it does not

necessarily imply that the collections are physically distributed.
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Figure 1. Multi-collection information retrieval.

system.

Figure 1 illustrates the general architecture of a multi-collection information retrieval

system. As shown in the figure, in addition to the collection selection component, the system

requires two other components, which also constitute important research directions: query

execution and results merging. The query execution component is responsible for translating

the user query into the schema of each of the underlying collections, sending that query out

to the collections selected in the first phase, and finally effectively retrieving the results from

the collections. The purpose of the results merging component is to process the list of results

obtained in the second phase in order to return a clean (i.e. duplicate-free, consistent, and

coherent) list of results to the user. The work presented in this thesis aims to address the

specific issue of collection selection in an environment where the collections in the group

contain some overlap. Section 1.2 illustrates this with an example.
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1.2. Motivating Example

Several keyword-based systems have addressed the problem of collection selection

and are mentioned in Section 2. Many independent experiments have shown that these

systems perform quite well in an environment of multiple collections. However, a large

majority of these systems assume that retrieval is performed over a non overlapping group

of collections. Unfortunately there are many existing scenarios where this simplified non-

overlap assumption is not justified, in particular in online meta-searching scenarios where

the purpose is to search over several, usually overlapping, document databases or search

engines. As mentioned by Chowdhury et al. [23], a real-world example of such a scenario is

the search engine supported by the NCCAM.2 It searches over several medical data sources,

across which duplicates are quite common, given the nature of the data. Information

retrieval systems for biological data are in fact needed. BioMediator [44, 39] is a data

integration system for several online and overlapping biomedical databases, and as such it

must also deal with the process of source overlap and source selection if it wants to achieve

a reasonable degree of effectiveness and efficiency. The example below further motivates

the problem.

Example: Consider for instance a news meta-search engine similar to Google

News [9], which attempts to retrieve articles from multiple news providers such

as CNN, The New York Times (NYT), The Washington Post (WP), The Fi-

nancial Times (FT), and The Wall Street Journal (WSJ). Chances are that for

a particular event, most of these news providers would have an article on the

subject and that all the articles relating to the same event would be very similar

to each other if not simply the same article bought from an external source.

2National Center for Complimentary and Alternative Medicine, part of the National Institute of Health.
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Considering the large number of news providers potentially available,3 given a

user query a news search engine aspiring to be as complete and effective as pos-

sible clearly cannot waste time and resources searching irrelevant or redundant

news collections. In such a scenario, analyzing the coverage of each provider

could help in determining which news sources are most relevant for a particular

query. Furthermore, analyzing the overlap among the sources – in addition to

the coverage – could help the news search engine in two important ways:

1. It could allow the engine to return many relevant and non-redundant arti-

cles instead of returning multiple copies of the same article with only minor

variations.

2. It could help the engine optimize its query plan to call fewer news providers

while still retrieving all or most of the relevant articles.

Figure 2 illustrates how collection selection would take effect in this particu-

lar example. Among the news providers mentioned above, one would assume

for example that FT and WSJ would contain more documents for a query on

“bank mergers” than the other providers. Similarly, one would expect these

two providers to have a relatively high overlap in their articles. Let us assume

that we want to determine which are the best two collections to access for that

particular query in order to retrieve the most new results. Considering both the

coverage and overlap properties of the available collections, it would probably

be best to call only one of FT or WSJ – the one with highest coverage – and

then call another collection with less overlap, such as CNN, to retrieve more

diverse results. Figure 2 illustrates the process for this specific example. ¤

3Google News claims to include more than 4,500 news sources!
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Figure 2. Typical scenario in a multi-collection information retrieval system. Only a few collections
end up being called for any given query.
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Of course, this example can be generalized to any keyword-based retrieval system

that searches over a set of overlapping text collections. In fact, the experimental evaluation

described in Chapter 4 was performed on a group of scientific bibliographies which, like

the news collections mentioned in the example above, can have significant overlap in the

publications they contain.

1.3. Overview of Challenges Involved

Using knowledge about coverage and overlap can definitely help in the overall dis-

tributed information retrieval process and in the collection selection phase in particular. In

a structured environment like relational databases, the overlap for a given query between

two databases can be simply defined as the number of result tuples that both databases

have in common. However, overlap in the context of text collections is much less straight-

forward to define and assess than in the context of relational databases. Overlap in the

relational model is easy to identify by using keys and easy to quantify by simply counting

the number of duplicate tuples. In contrast, overlap between two text collections means

that some documents are highly similar, as opposed to strictly identical. In fact, if we

were to consider only identical text documents to determine the level of overlap between

collections, we could not use overlap to avoid calling a collection that contains very similar

documents as one that has already been called.4 The overlap between two text collections

could thus be defined as the number of results that are similar above a certain threshold.

The meaning of overlap having changed, its complexity of computation also has changed,

not only because computing document similarity is usually more expensive than checking

for duplicate tuple keys, but also because a single result from the first collection could be

4For example, we would hardly expect newspapers to publish perfectly identical stories.
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similar to several results from the second collection. In fact, the difficulty here is how to

efficiently compute, gather, and then adequately use the overlap information. This thesis

addresses the issues described above and presents a system that gathers and uses overlap

information to improve the collection selection step in a text database environment.

1.4. Overview of the Proposed Solution

The solution developed in this thesis addresses the collection selection issue in an

environment of overlapping collections by using statistics on both the coverage of each

collection and the overlap between them. More specifically, the intent is to be able to

determine, for any specific user query, which collections are more relevant (i.e. which

collections contain the most relevant results) and which set of collections is most likely to

offer the largest variety of results (i.e. which collections are likely to have least overlap

among their results). Intuitively, we would want to call the most relevant collection first,

and then iteratively choose high coverage collections that have least overlap with the already

selected collection(s). In our motivating example from Section 1.2 with the query “bank

mergers”, FT could be the source with highest coverage, and therefore would be chosen first

by our approach. Note that WSJ would probably also have high coverage for that query,

but it would most likely have high overlap with FT. Our system would then find which

collection among WSJ, CNN, NYT, or WP has the least similarity with FT, and decide to

rank that collection as second best for that particular query. Clearly WSJ is not a good

candidate at this point. Assuming the second best collection was determined to be CNN,

the system would then try to find the collection that has least overlap with both FT and

CNN. This process would continue until the number of desired collections is reached.
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Our approach, called COSCO5, actually stores coverage and overlap statistics with

respect to queries since different queries may lead to a different set of relevant collections.

In essence, each query has its own statistics. In our motivating example, our system would

gather the number of articles each news source returns for the query “bank mergers”, and

store this coverage information in association with the specific query. Similarly, our system

would compute overlap statistics for that particular query as the similarity between the set

of results returned by each news source for the query “bank mergers”.

Storing the statistics with respect to queries ensures that when a new query comes

in, the system is able to find statistics relevant to that particular query. However, since it

is infeasible to keep statistics with respect to every query, we store them with respect to

query classes instead. Query classes are defined in terms of frequent keyword sets, which are

identified among past queries for which we have coverage and overlap statistics. Any new

query could then be mapped to a set of known keyword sets. The benefit of using frequent

item sets in place of exact queries is that previously unseen queries can also be mapped to

some item sets. For example, our system would store coverage and overlap statistics for

the item set {bank, mergers},6 but it would also store statistics for the smaller item sets

{bank} and {mergers}. Now if a new query “company mergers” is asked, then our system

could use the statistics stored for the item set {mergers}, even though no statistics were

stored for the set {company, mergers}.

The coverage statistics are straightforward to obtain, as they are related to the

number of results returned by a collection for a specific query. That number is usually

readily available from collections at query time. The overlap statistics, as explained in

Section 1.3, are more challenging to estimate and we propose to compute the overlap between

5COSCO stands for COllection Selection with Coverage and Overlap Statistics
6Assuming this keyword set is frequent enough.
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two collections by looking at their respective result sets, as opposed to the individual results.

This approach simplifies greatly the overlap computation and yet seems to be an effective

approximation, as will be shown in this thesis.

1.5. Outline of the Thesis

The thesis is organized as follows. Existing work related to the particular problems

presented above is discussed in Chapter 2. COSCO, the contribution of this thesis – and

solution to the challenges previously mentioned – is presented in Chapter 3. The experi-

mental evaluation is detailed in Chapter 4. Some future work is then suggested in Chapter

5, before concluding in Chapter 6.



CHAPTER 2

Related Work

Several directions of related work in information retrieval are relevant to the re-

search detailed in this thesis. In order to address the problem of collection selection in a

distributed and overlapping environment, there are essentially three subproblems that need

to be considered: collection selection, document similarity estimation, and gathering/using

overlap statistics. Previous work related to each of these problems is described next.

2.1. Collection Selection

Several approaches have been taken to solve the collection selection problem. As

mentioned by Powell and French in their systematic comparison of collection selection algo-

rithms [43, 25], the main idea has been to try to create a representative for each collection

based on term and document frequency statistics of the collection, and then use these statis-

tics at query-time to determine which set from the pool of collections is most promising for

the incoming query. This is the case for gGlOSS [27, 28], the Cue Validity Variance ranking

method (CVV) [53], and the Collection Retrieval Inference Network approach (CORI) [21].

These three collection selection mechanisms attempt to determine which are the collections

that contain documents very similar or relevant to the query. More specifically, gGlOSS
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ranks the collections in terms of their goodness, which is in turn estimated as the sum of all

document-query similarities in a collection. The CVV ranking method (from the D-WISE

system) essentially looks at the distribution of each query term across the pool of collections,

determines how discriminatory each query term is, and then for each collection calculates

the sum of document frequencies for query terms weighted by the discriminatory factor of

that term across all collections. Finally, CORI1 takes the approach of representing each

collection as a “virtual” document, for which the virtual term list is the set of terms present

in the collection and the virtual term frequency is actually the document frequency of each

term in the collection. The statistics these systems typically need can be the document

frequency of each term, the collection frequency of each term, the number of documents in

each collection, and/or the weight of terms over a collection.

More approaches have been proposed. For instance, Yu et al. [52, 50] rank the

collections in terms of the similarity of the most similar document in the collection. Meng

et al. [38, 36] try to estimate the number of useful documents in a collection to determine

which collections are most relevant. The MRDD approach from Voorhees et al. [49, 48]

uses training queries to learn how many documents should be retrieved from each collec-

tion. SavvySearch [30] utilizes past retrieval statistics to evaluate how well each collection

responds to each possible query term. Ipeirotis and Gravano [32] probe the collections to

extract content summaries and use a hierarchical topical classification of the collections to

rank them when given a query. Liu et al. [37] present a probabilistic model which attempts

to capture the error in the estimation of database relevancy for specific queries. King and

Li [35] have suggested using singular value decomposition to analyze collection-to-collection

relationships. Finally, Conrad and Claussen [24] look at domain-specific environments and

1CORI will be described more thoroughly when discussing the experimental evaluation in Chapter 4
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rely on the users to categorize their query, and then use that information to select a set of

collections.

2.2. Document Similarity

Unlike in relational databases, where overlap is simply defined as the number of

identical tuples, text databases require a definition of overlap based on document similarity.

Measuring exact similarity between documents (to simulate the relational model of overlap)

requires duplicate detection mechanisms such as those described in [46, 23, 45]. These

methods rely on fingerprinting documents or chunks of documents and comparing these

fingerprints – or the number of fingerprints in common – to point out duplicates. Others

use methods involving more traditional IR techniques, including Jaccard similarity (used by

Haveliwala et al. in [29]) or the basic Cosine similarity (used by Yu et al. in [52]). Any of

the similarity methods mentioned here could potentially be used for overlap computation in

a group of text collections, depending on how strict we want the overlap to be (i.e. identical

documents or highly similar documents).

2.3. Coverage and Overlap Statistics

Existing work on coverage and overlap statistics gathering has been done using

probing queries to estimate statistics for each collection. Nie and Kambhampati [40] have

used probing to gather both coverage and overlap statistics in a relational data model.

In [41], they use a large set of past queries with their associated coverage and overlap

statistics and cluster them based on these statistics and the frequency of the training queries.

Their query classification then allows them to correctly identify for a new user query which

is the set of collections that has the maximum cumulative coverage (thereby taking into
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account overlap between collections). Note, though, that the main difference between the

work described in this thesis and Nie and Kambhampati’s approach in [41] – consisting of

attribute-value hierarchies and query classes – is that, unlike in a relational environment,

there are no attributes to classify queries on in a text collection environment.

Ipeirotis and Gravano [32] have also used coverage information to guide their probing

strategy but have not looked at overlap at all. Yerneni et al. [51] have looked at coverage

of information sources in trying to maximize the number of results a web mediator would

retrieve. They have also considered overlap between pairs of sources, but their approach

focused on qualitative overlap information (e.g. disjointness, equivalence, etc.) which they

assumed to be readily available. Finally, Voorhees et al. [49, 48] have suggested using

overlap between queries to cluster them and then use these collection-specific clusters to

estimate how many documents should be retrieved from each available collection. Unlike in

the work presented in this thesis, they consider strict identity of documents as their overlap

estimation metric. Furthermore, the overlap between collections is not taken into account,

as they compute query overlaps for each individual collection.



CHAPTER 3

COSCO: Collection Selection using Coverage and Overlap

Statistics

3.1. General Approach

The work described here addresses the problem of collection selection in a distributed

group of overlapping collections. This problem has not previously been addressed in the

collection selection literature, as it has usually been assumed that the group of collections

constitutes a perfect partition of all documents available. COSCO, the solution presented in

this thesis, concentrates on gathering coverage and overlap statistics of collections and using

these statistics at query time to best estimate which set of collections should be searched, as

explained with an example in Section 1.4. The general approach for COSCO is illustrated

in Figure 3 and described in more detail in the next sections. As can be seen from the

figure, the system is composed of an offline component which gathers the statistics and an

online component which determines at runtime the collection ranking for a new incoming

query.
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Figure 3. Architecture of COSCO, our collection selection system.

3.2. Gathering and Computing the Statistics: the Offline Component

The purpose of the offline component in the collection selection system is to gather

coverage and overlap information about collections for particular queries, and compute

relevant statistics for the online component to use. More precisely, the offline component

addresses three subproblems. First it must obtain the appropriate coverage and overlap

information from the collections. It must then identify frequent item sets among previously

asked queries to better map new queries at runtime, as mentioned in Section 1.4. Finally

it must compute new statistics corresponding to each of these item sets.

3.2.1. Gathering query statistics.

3.2.1.1. Issues in defining overlap.

Working with text collections, and therefore keyword-based retrieval, complicates both the

retrieval process and the overlap computation. As was discussed in Section 1.3, the first

issue that needs to be addressed is how overlap is defined in this new environment. Cost
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Figure 4. Two collections with overlapping results. A line between two results indicates that there
is a high similarity between them.

of computation will definitely depend on whether we consider overlap to be equivalent to

perfect identity or rather high similarity. In fact, using a similarity measure to evaluate

overlap instead of a strict identity detection mechanism is more appropriate for this envi-

ronment, as the overall purpose of the system is to avoid retrieving redundant documents

and, certainly in scenarios of text collections, redundant documents may not necessarily be

perfectly identical.

As was mentioned earlier, the overlap between two collections evaluates the degree

to which one collection’s results are in common with another’s. The ideal overlap measure

would therefore capture the number of results in a collection C1 that have a similarity

higher than a predetermined threshold with a result in a collection C2. The difficulty in

this overlap computation follows from the fact that a single result in C1 could very well be

highly similar to several results in C2, and vice versa. For example, Figure 4 shows a case

where three results from collection C1 – results A, C, and D – have a high similarity with

a single result from collection C2 – result W. Similarly, two distinct results from C2 have

a high similarity with result G from C1. These concepts are closely related to the notions

of containment and subsumption relationships. Measuring overlap in the cases mentioned
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Figure 5. A simple example of three collections with overlapping results. A line between two results
indicates that there is a high similarity between them.

above is essentially analogous to evaluating how one collection’s result set is contained in

or subsumed by another collection’s result set.

An even more problematic situation arises when considering overlap between several

sources. Extending the notion of result-to-result overlap described in the previous paragraph

to more than two collections could become very expensive. The fact that we want to capture

similarity of results – as opposed to simply equality – when computing the overlap statistics

for multiple collections would indeed lead to some costly computation. Consider for example

the simplified case illustrated in Figure 5. Result E in C1 overlaps with result Y in C2 as

well as with result J in C3, while result Y in C2 only overlaps with results I and L in C3. In

such a scenario, it seems reasonable to consider that the three collections have some degree

of overlap, however the difficulty lies in quantifying this overlap. Although this instance is

not very likely to happen if the similarity threshold used to determine overlap between two
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results is high, it is still a situation that would need to be handled.

3.2.1.2. Definition of overlap.

To address the challenges mentioned previously, this thesis proposes an overlap approxi-

mation which amounts to considering each query result set over a particular collection as

a single document (i.e. a bag of words) instead of a set of documents (i.e. a set of bags).

Overlap between two collections for a particular query would thus be calculated as the over-

lap between the union of the results of the two collections for that query. The motivation

for this approach is that it is much cheaper than considering individual results for overlap

computation and can still be effective enough in determining to what degree the results

of two collections overlap. Furthermore, we choose to store statistics for overlaps between

pairs of collections only, as the online component will approximate the overlap between sev-

eral collections using only these pairwise overlaps. Ignoring the actual overlap between sets

of more than two collections will naturally cause some imprecisions, but, as will be shown,

this approximation remains effective and much more efficient than an approach which would

require overlap to be computed for all potential sets of collections.

Following this approach, the overlap between collections C1 and C2 for a query q is

computed as the size of the intersection R1q∩R2q, where Riq is the document corresponding

to the union of the results for query q from collection Ci.
1 In other words,

Riq =
⋃

resultsCi,q (3.1)

where resultsCi,q refers to the set of all results returned by collection Ci for query q. Hence,

1Recall that the intersection D1 ∩ D2 between two bags of words D1 and D2 is simply a bag containing
each word which appears in both D1 and D2 and for which the frequency is equal to the minimum number
of times the word appears in either D1 or D2. For example, {data, mining, integration, data, integration}∩
{data, integration, integration, system} ≡ {data, integration, integration}.
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the definition for overlap is the following:

overlapq(Ci, Cj) = |Riq ∩ Rjq| (3.2)

Notice that overlap as defined is a symmetric relation since overlapq(Ci, Cj) =

overlapq(Cj , Ci).

3.2.1.3. Other approaches to gather overlap statistics.

Instead of considering entire sets of documents and “union-ing” these into a single result-

set document as done in formula (3.1), another method to compute overlap between two

collections could be to directly take advantage of the way the underlying collections return

their results. More specifically, if snippet-like results are returned first by the collection

instead of the actual results, then perhaps an overlap measure using simply the snippets

as representatives of results would be more efficient and as effective. The drawback of

this latter approach however is that different collections may display snippets in different

formats, making them difficult to compare. More importantly, since each collection has

its own method for extracting a snippet from a given document, it is not clear that two

identical or highly similar documents would even have similar snippets (e.g. consider the

case when a collection generates a query-dependent snippet while another collection stores

a single static snippet for each document).

3.2.1.4. Other statistics stored.

In addition to the overlap information, other necessary statistics include query frequency

and collection coverage. Both are much easier to collect for individual queries. The query

frequency simply refers to the number of times a particular query has been asked in the past,

and we will define it as freqq. Collection coverage for a query is the number of results a
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collection returns for that query. Note that once the coverage of each collection is known for

a single query, the absolute coverage becomes irrelevant; instead we can consider coverage

as a relative measure in terms of all results available, making a closed-world assumption.

The following definition will be used for the coverage of a collection Ci with respect to a

query q:

coverageq(Ci) =
|resultsCi,q|

∑n
k=1

|resultsCk,q|
(3.3)

where n is the total number of collections being considered by the collection selection engine.

Notice that the denominator
∑n

k=1
|resultsCk,q| in Equation 3.3 may actually be counting

some results multiple times because of the overlap between collections, but this does not

affect the relative coverage measure of each collection for a particular query q since the sum

would remain constant for q.

In summary, the statistics stored for each query can be considered as a vector of

statistics, defined as
−−−→
statsq. The components of

−−−→
statsq are the following:

















coverageq(Ci), for all i from 1 to n

overlapq(Ci, Cj), for all i, j from 1 to n, with i < j

|Riq|, for all i from 1 to n.

Note that in addition to coverage and overlap statistics, we also store |Riq| statistics. The

size of the result set documents is indeed necessary and its usage will be clarified in Section

3.3.3 when describing the collection selection algorithm. The
−−−→
statsq vector must therefore

be computed for each previously asked query before moving on to the next step, described

in Section 3.2.2.
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3.2.2. Identifying frequent item sets.

With an overlap criterion now in hand and a statistics vector available for each known query,

the next point to investigate relates to how to make use of the statistics. In fact, keeping

statistics with respect to each individual query would be not only costly, but also of limited

use since the statistics could only be used for the exact same query. In contrast, queries can

be clustered in terms of their keywords as well as their corresponding coverage and overlap

statistics with the objective of limiting the amount of statistics stored, yet keeping enough

information for the online component to handle any incoming query.

Essentially, the method consists in identifying not only queries but also frequently

occurring keyword sets among previously asked queries. For example, the query “data

integration” contains three item sets: {data}, {integration}, and {data, integration}. All,

some, or none of these item sets may be frequent, and statistics will be stored only with

respect to those which are. While keeping the number of statistics relatively low, this

method also improves the odds of having some statistics available for new queries, as we

would possibly be able to map previously unseen queries to some item sets. Using the

previous example, even though the query “data” may not have been asked as such, the

idea is to use the statistics from the query “data integration” – if it is frequent enough –

to estimate those for “data”. The purpose of identifying the frequent items sets among the

queries is to avoid having to store statistics for each query, and instead store statistics with

respect to frequently asked keyword sets, which are more useful for the online component,

as will be explained in Section 3.3.

The Apriori algorithm [19] was used to discover the frequent item sets. Recall that

the algorithm relies on the anti-monotonicity property, stating that a frequent set cannot

have an infrequent subset.
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3.2.3. Computing statistics for frequent item sets.

Once the frequent item sets are identified, statistics for each of them need to be computed.

The statistics of an item set are computed by considering the statistics of all the queries

that contain the item set. Let QIS denote the set of previously asked queries that contain

the item set IS. As an example,

Q{data,integration} = {“data integration system”, “data mining and data integration”, ...}

The statistics for an item set IS are defined as the weighted average of the statistics

of all the queries in QIS , according to the following formula:

−−−−→
statsIS =

∑

qi∈QIS

freqqi
∑

qj∈QIS
freqqj

×
−−−−→
statsqi

(3.4)

As apparent in formula (3.4), the statistics of the queries are weighted by the fre-

quency of each query, which was collected in the previous phase in addition to
−−−→
statsq. Using

freqq
∑

qj∈QIS
freqqj

as the weight ensures that the statistics for the item set would be closer to

those of the most frequent queries containing the item set. The statistics should thus be

more accurate more often.2 Notice that
−−−−→
statsIS will contain estimated statistics for each of

these components: coverageIS(Ci), overlapIS(Ci, Cj), and |RiIS |.

A special case must also be dealt with when computing the statistics vectors of the

frequent item sets, and that is for the empty item set, ISempty. It is necessary to have

statistics for the empty set in order to have statistics for entirely new queries (i.e. those

which contain none of the frequent item sets identified by the offline component). The

statistics for the empty set,
−−−−−−−−→
statsISempty , are computed after having obtained all

−−−−→
statsIS

2This assumes that the new queries will follow a distribution close to that of the previously asked queries.
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vectors.
−−−−−−−−→
statsISempty is calculated by averaging the statistics of all frequent item sets. Let

us denote as item sets the set of all frequent item sets. The formula we use is then:

−−−−−−−−→
statsISempty =

∑

IS∈item sets

−−−−→
statsIS

|item sets|
(3.5)

3.3. Collection Selection at Runtime: the Online Component

The online component of the collection selection system is the component in charge

of determining which is the best set of collections to call for a given user query. This requires

essentially three phases. First the incoming query must be mapped to a set of item sets for

which the system has statistics. Second, statistics for the query must be computed using

the statistics of all mapped item sets. Finally, using these estimated query statistics, the

system must determine which collections to call and in what order.

3.3.1. Mapping the query to item sets.

The system needs to map the user query to a set of item sets in order to obtain some pre-

computed statistics and estimate the coverage and overlap statistics for the query. This step

resembles a minimum set cover problem [26, 31] with a few variations. More specifically, the

goal is to find which group of item sets covers most, if not all, of the query. When several

sets compete to cover one term, the set(s) with the most terms is(are) chosen. Consider for

example the query “data integration mining”, and suppose the item sets {data}, {mining},

{integration}, {data, mining}, {data, integration} are all frequent, while {integration, min-

ing} and {data, integration, mining} are not. In that case, the query will be mapped to

both frequent two-term sets, even though smaller sets could cover the query (e.g. {data,
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integration} and {mining}). Furthermore, note that if the item set {integration, mining}

was frequent, then the query would be mapped to this set in addition to the other two-term

sets. Finally, if the item set {data, integration, mining} was frequent,3 then the query would

only be mapped to this three-term set. An illustration of the query mapping process with

some of the examples described above is shown in Figure 6.

The algorithm used to map the query to its frequent item sets is given in Algorithm 1.

Practically speaking, the query q is mapped by first taking all frequent item sets that are

Algorithm 1 mapQuery(query Q, frequent item sets FIS) → ISQ

1: ISQ ← {}
2: freqQTerms ← {}
3: for all terms t ∈ Q such that t ∈ FIS do

4: freqQTerms ← freqQTerms ∪ t
5: ISQ ← PowerSet(freqQTerms)
6: for all ISi ∈ ISQ such that ISi /∈ FIS do

7: Remove ISi from ISQ

8: for all ISi ∈ ISQ do

9: if ISi ⊂ ISj for some ISj ∈ ISQ then

10: Remove ISi from ISQ

11: Return ISQ

contained in the query (lines 3 to 7). Among these selected item sets, those that are subsets

of another selected item set are removed (lines 8 to 10) on the grounds that the statistics of

a subset would be less accurate. The resulting set, which we call ISq, is the set of mapped

item sets for the query q.

Notice that the algorithm would still perform its intended task if lines 3 and 4

were removed and line 5 instead read “ISQ ← PowerSet(Q).” The step described in these

lines was inserted in the algorithm to minimize the power set computation by eliminating

before-hand the query terms which are not frequent.

3Note that this would imply that item set {integration, mining} was also frequent.
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Figure 6. Mapping query “data integration mining” to its related frequent item sets. a, b, and c

show how the query would be mapped when the set of frequent item sets varies.
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3.3.2. Computing statistics for the query.

Once the incoming user query has been mapped to a set of frequent item sets, the system

computes coverage and overlap estimates by using the statistics of each mapped item set.

For example, in the case shown in Figure 6a, ISqnew = {{data, integration}, {mining}},

which means that the system would use the statistics of both item sets {data, integration}

and {mining} for its statistics estimates. The query statistics for qnew, noted as
−−−−−−→
statsqnew ,

are calculated by averaging each of the mapped item set statistics:

−−−−−−→
statsqnew =

∑

IS∈ISqnew

−−−−→
statsIS

|ISqnew |

In the case where ISqnew = {} = ISempty, in other words the query qnew was not

mapped to any item set, then we approximate
−−−−−−→
statsqnew as being equal to

−−−−−−−−→
statsISempty . In

summary, we can write the following definition for
−−−−−−→
statsqnew :

−−−−−−→
statsqnew =















∑

IS∈ISqnew

−−−−−→
statsIS

|ISqnew | , if ISqnew 6= ISempty

−−−−−−−−→
statsISempty , if ISqnew = ISempty.

(3.6)

3.3.3. Determining the collection order.

The aim of our collection selection system is to make sure that for any given k, the system

would return a set of k collections which would result in the most number of distinct results

of all sets of k collections. Another way to consider this is that every time a new collection

(from the order suggested by our system) is called, then it is the collection that would provide

the most new results, taking into account the collections that have already been called. By

taking into account coverage of collections with respect to item sets, our strategy would

thus avoid calling collections that contain very few if any relevant documents. Moreover, by
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taking into account overlap among collections, it would avoid calling redundant collections

which would not return any new document.

Once the query statistics
−−−−−−→
statsqnew have been computed, the collection selection

process is the following. The first collection selected is simply the one with highest coverage

coverageqnew(Ci). The next collections are selected by determining which one would lead to

the largest remaining result set document. More formally, the collection selection process

is done according to formula (3.7). At each step k, we select collection Cl such that

l =















argmax
i

[

coverageqnew(Ci)

]

, for k = 1

argmax
i

[

|Riqnew | −
∑

Cj∈S
overlapqnew(Ci, Cj)

]

, for k > 1

(3.7)

where S is the set of already selected collections.

Notice that for k > 1, the formula is approximating the remaining result set docu-

ment size by looking at pairwise overlaps only. As was explained in Section 3.2.1.2, we are

essentially assuming that higher-order statistics (i.e. overlaps between more than two collec-

tions) are absent. This could obviously cause some inaccuracies in the statistics estimation,

but as will be shown in chapter 4, the approximation presented here is quite effective.



CHAPTER 4

Experimental Evaluation

The experiments described in this chapter were designed to test whether the collec-

tion selection system presented in this thesis can in fact perform better in an environment of

overlapping text collections than the systems commonly accepted as being the most effective

by the information retrieval community. The experiments were performed in the domain of

scientific bibliography collections. This chapter covers the entire experimentation procedure

performed to test our system, including the experimental setup, a description of the system

used as a comparison, details about the training performed by the offline component of our

system, and finally results obtained with the online component.

4.1. Experimental Setup

The test bed used for the experiments was composed of fifteen scientific collections:

six were real online public bibliographies and the remaining nine were artificial collections

created only for the purpose of the experiments described in this chapter. To complete the

experimental framework, a list of previously asked queries was required to gather statistics

and identify frequently occurring keyword sets. This section describes which list of past

queries was used in the entire experimentation, and how the collections in the test bed were
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either probed or created.

4.1.1. List of Real User Queries.

In order to test COSCO, the approach described in Chapter 3, a list of real user queries was

required to collect coverage and overlap statistics, as well as to identify frequent item sets.

As will be explained later, the queries were first used to probe the online bibliographies.

The probing queries were selected as the most frequent queries appearing in the existing

query-list gathered by BibFinder [1] in the work described in [41]. All the queries with

a frequency greater than or equal to 4 were considered, which resulted in 1,062 distinct

queries and a total cumulative frequency of 19,425. The distribution of the query-list in

terms of the query frequencies is given in Figure 7. The cumulative distribution is shown

in Figure 8, where it can be seen that approximately 87% of the queries had frequency less

than 10, and 95% had frequency less than 50.

Since we were dealing with a keyword-based search scenario, and since the queries

from the BibFinder query-list were relational, each query selected was transformed into a

keyword query by simply merging all the fields from the relational query. For example,

the query author = “alon halevy” AND title = “data integration” was converted to the

keyword query “alon halevy data integration”. Among the 1,062 distinct queries in the

query list there were 1,482 distinct terms. Interestingly the average number of terms per

keyword query was 2.2, which is surprisingly close to the average length of queries posed to

online search engines according to some past surveys [33, 47, 34].

4.1.2. Real Collections.

The six publicly available collections used were the ACM Digital Library [14], the ACM

Guide [15], ScienceDirect [13], Compendex [5], CiteSeer [2], and CSB [16]. In the remainder
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Figure 7. Distribution of queries in the query-list in terms of their frequency.
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Figure 8. Cumulative percentage of queries in the query-list in terms of the query frequency.
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of this chapter, these six collections will be referred to as acmdl, acmguide, sciencedirect,

compendex, citeseer, and csb. These collections were picked among others because they

offered a full-text keyword search, meaning that they provided the functionality of searching

for keywords within the entire documents instead of only giving the option of binding

specific attributes.1 The text documents contained in these collections represent scientific

publications and include the following textual attributes: author names, title, publication

year, conference or journal name, and abstract. The concatenation of the attributes just

mentioned constitutes a single document.2

The six online bibliographies were probed in order to collect actual results for the

queries in the query-list. During probing, each of the queries were sent to each collection

at regular yet polite time intervals. To remain in the keyword-based search scenario, the

collection wrappers were built so that the queries would be asked as general keyword queries

in the collection interfaces. In other words, no binding was performed. For each query, the

top-20 results returned by a collection were retrieved. As mentioned earlier, the results

were documents containing title, abstract, conference or journal name, year, and authors.

These documents were then stored and indexed by query and collection. Note that the

collections did not always contain all information for a particular result, in which case only

the available fields were stored as a document. Note also that each collection had its own

ranking strategy, which the end-user is generally not aware of. This means in particular that

the same query may lead to a different set of top-20 results on two distinct bibliographies

even though the complete result set may be identical for the two collections. Finally, when

the collections gave the option of ranking either by relevance or by date, the results retrieved

1This is why some other scientific bibliography collections such as DBLP [6] or the Network Bibliography
[12] could not be included in the collection test bed: they only provided specific attribute bindings and did
not let the user perform a general full-text keyword search.

2Note though that not all attributes were always available for each publication.
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were the top-20 ranked by relevance.

Other than the actual set of results returned by the collections, the total number of

results matching the query in a collection was also stored, when available. A summary of

the probing results on the six online collections can be seen in Table 1, which illustrates

the differences in coverage of each source and the number of results that were actually

retrieved. The “Total Results” row in the table shows the grand total of the number of

results found by a collection. This total is simply informative and may include some results

several times if they were returned for different queries. It does however provide an idea of

the size of each collection. The “Retrieved” row refers to the grand total of top-20 results

which were retrieved, stored, and indexed. The theoretical maximum for each element in

this row is of course 20× 1, 062 = 21, 240. However, since not all queries lead to 20 results,

this maximum was not reached, and overall the probes retrieved a total of 89,177 results.

Finally, the “Abstracts” row shows the number of retrieved results which contained an

abstract.

acmdl acmguide sciencedirect compendex citeseer csb

Total Results 3,109,107 5,489,438 784,356 9,625,222 1,032,566 N/A3

Retrieved 15,207 17,364 13,047 14,458 16,343 12,758

Abstracts 10,824 12,381 12,379 12,048 15,389 1,4254

Table 1. Statistics for the probing of the online bibliography collections.

It is interesting to note that even though compendex displays close to three times the

number of total results from acmdl, acmdl still manages to retrieve slightly more results than

compendex. The explanation for that observation is that acmdl would more often return

3The query interface of CSB does not display the total number of results matching a specific query. For
the purpose of our experiments we consider the number of retrieved results as the coverage for csb.

4The number of abstracts retrieved from CSB is relatively low because the CSB collection only returns
BibTEX entries, which rarely contain the publication abstract.
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some results, while compendex would sometimes return much more results than acmdl for

a single query and yet only the first 20 would be retrieved.

4.1.3. Artificial Collections.

In addition to the six online collections described above, nine others were artificially created

using the contents of the online collections which were obtained during the probing phase

described in the previous section. The set of artificial collections was created with the

intent of having both a relatively large test bed as well as a test bed which definitely shows

some controlled degree of overlap between collections. To that end, two classes of artificial

collections were created: collections which were subsets of one of the six real collections,

and collections which contained subsets of multiple real collections:

• Six collections were created by taking a random proper subset of 7,000 documents from

each of the six real collections. The citeseer sub collection was generated by iterating

through the query-list in a random order, and randomly adding some of the results

from citeseer for each selected query, until the number of documents selected reached

7,000. The collections acmdl sub, acmguide sub, sciencedirect sub, compendex sub,

and csb sub were created following the same randomized strategy.

• Three additional collections were created by “union-ing” multiple subsets of different

real collections. The collection sc cs is simply a collection containing the union of

sciencedirect sub and csb sub, and therefore has a total of 14,000 documents. Simi-

larly, cp ci is the union of compendex sub and citeseer sub, and also contains 14,000

documents. Finally, mix 15 is a collection which contains 15% of each of the six real

collections. The 15% of each collection were selected in the same randomized proce-

dure described above, for a total of 13,374 documents. Notice that this implies that
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the distribution of the contents of mix 15 is proportional to the distribution of the

number of retrieved results shown in Table 1. Furthermore this means, for exam-

ple, that the 15% of citeseer contained in mix 15 are most probably not a subset of

citeseer sub but instead have some degree of overlap with it.

Table 2 provides a summary of the test bed of fifteen collections used for the ex-

periments. In order for these artificial collections to be used in an information retrieval

Real Collections Artificial Collections
documents documents

acmdl 15,207 acmdl sub 7,000
acmguide 17,364 acmguide sub 7,000
sciencedirect 13,047 sciencedirect sub 7,000
compendex 14,458 compendex sub 7,000
citeseer 16,343 citeseer sub 7,000
csb 12,758 csb sub 7,000

sc cs 14,000
cp ci 14,000
mix 15 13,374

Table 2. Complete test bed of collections with the number of documents they contain.

scenario, it was also necessary to have a search capability for each of them. Therefore, the

nine collections were considered as being complete bibliographies and an actual text search

engine was built on top of each, using open source libraries from [11]. These libraries pro-

vided all required functionalities such as keyword-based full-text search, ranking of results,

as well as statistics on the documents and terms contained in the collection.5 The nine

additional collections were thus each considered as a separate, searchable bibliography.

Notice though, that the ranking method used by these newly created collections was

most likely different from the method used by the real collections they originated from. An

5These statistics would especially come in handy to implement the CORI approach, described in Section
4.2.
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obvious consequence was that it was quite possible that, for example, the top results from

acmdl sub for a query differed somewhat from the top results from acmdl. A possible reason

could be that acmdl used more fields than just the text fields contained in the documents

in acmdl sub to rank its results. Another reason could be that while all artificial collections

used a variation of the Cosine similarity method with tf-idf term weights, it is possible that

some of the real collections used other ranking paradigms such as the number of citations,

which may clearly lead to different sets of results. In short, one cannot make the assumption

that the results of a real collection C for a query q are a super set of the results from an

artificial collection C sub for the same query q.

4.2. Setting up CORI

Chapter 2 mentioned that the three best-known collection ranking algorithms were

CORI [21], gGLOSS [27, 28], and CVV [53]. CORI has been shown several times [43, 25] to

be the most stable and effective of the three, which is why it was used as a basis to compare

the performance of our collection selection approach.

The CORI collection selection algorithm represents each underlying collection by

its terms, their document frequencies, and a few other collection statistics such as word

counts. The approach essentially corresponds to the tf-idf method for document retrieval

techniques, except that it considers the collections themselves as the documents. In other

words, CORI can be seen as a df-icf approach, where df is the document frequency of a

term in a particular collection and icf is the inverse collection frequency of that term.

For a given query, the CORI algorithm will evaluate the belief p(tk|Ci) in collection

Ci for each query term tk. The belief is calculated as follows:

p(tk|Ci) = 0.4 + 0.6 ∗ T ∗ I (4.1)
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T =
df

df + 50 + 150 ∗ cw/cw
(4.2)

I =
log( |C|+0.5

cf
)

log(|C| + 1.0)
(4.3)

where:

df is the number of documents in Ci containing the term tk,

cf is the number of collections containing the term tk,

|C| is the number of collections being ranked,

cw is the number of words in Ci,

cw is the average cw of the collections being ranked.

Once the belief values have been computed for each query term with respect to each

collection, the values are averaged over the terms for each collection. Finally, the collection

selection process simply ranks these estimated belief values and considers the collections in

the ranked order obtained. More details on CORI can be found in [21].

4.3. Training the System

As was described in the previous chapter, COSCO requires both an offline and an

online component. The offline component is essentially used during a training phase, where

the purpose is to compute and store some coverage and overlap statistics for the online

component to use. Recall that the three main activities of the offline component, as shown

in Figure 9, are to gather statistics for the queries, identify frequent item sets, and compute

statistics for these item sets.

The first step in the training process is to prepare a list of training queries. In the

experiments described here, the training query list was composed of 90% of the query-list

described in Section 4.1.1. Specifically, 956 queries were randomly selected among the 1,062
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Figure 9. Offline component of the collection selection system.

distinct queries. The distribution of training queries in terms of their size is shown in Table

3. The remaining 106 queries were used when testing the system (see next section). The

Query size 1 2 3 4 5 6 7 8 9 10 11+ Total Average size

Probing set 370 433 158 36 21 15 9 5 5 4 6 1,062 2.1685

Training set 334 388 143 32 19 15 7 5 4 3 6 956 2.1684

Table 3. Distribution of the probing and training query sets in terms of the number of
keywords in each query.

training and testing queries thus formed two disjoint sets.

With the set of training queries identified, the next step was to probe the collection

test bed by sending each query to each collection and retrieving the set of top-20 results.

In addition to the list of results appearing in the top-20, the total number of results found

in the collection was also stored in order to later compute the coverage statistics. Note that

in practice, we did not actually need to probe the six real collections since we had already

done so when creating the collection test bed. In fact, the results for each query – including

the training queries – had previously been stored and indexed. Hence only the artificial

collections were actually probed with the training queries.
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Figure 9 suggests that the next step is to identify the frequent item sets in the

training query-list. When setting the minimum support threshold to 0.05%, an item set

was essentially considered frequent if it appeared in 9 or more queries, which resulted in

a total of 681 frequent item sets. Of those, 412 were single-term item sets, 205 were two-

term sets, 50 were three-term sets, 12 were four-term sets, and 2 were five-term sets.6 The

computation itself only took a few seconds to run.

Note that to avoid useless item sets, stop-words were removed from the queries before

the item set computation, although the list was kept to a very small set.7 In addition, the

case arose where the same term could appear twice in the same query, which could lead

to inconsistencies in the frequent item set computation. Consider the query “peer to peer

network”. For this query, the set {peer, network} was thus considered to appear only once

although one could naturally argue that it appears twice. To keep the item set computation

consistent, it was only counted once in this instance, since otherwise it would be possible

for a frequent item set to appear more times than one of its subsets.

Finally, the last step the offline component must perform is to compute the statistics

for the frequent item sets and store them for later use by the online query-processing

component. The statistics vectors
−−−−→
statsIS (one for each frequent item set) and

−−−−−−−−→
statsISempty

were computed as explained in Section 3.2.3. The statistics fit in a 1.28MB file for the

0.05% frequency threshold, and in a 7.39MB file for the 0.03% frequency threshold.

6The two five-term sets were {2000, engine, giles, lawrence, search} and {ad, dynamic, hoc, networks,
wireless}.

7The list of stop-words removed from the queries during the experiments contained the following words:
“a”, “an”, “and”, “in”, “for”, “of”, “on”, and “the”.
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Figure 10. Online component of the collection selection system.

4.4. Testing the System

Testing our collection selection approach consisted in having the online component

of our system process each query which was set aside when creating the training query-list.

Recall from the previous section that there were 106 test queries, or 10% of all probing

queries. The online component, as explained in Section 3.3 and depicted in Figure 10, is

responsible for mapping the incoming user query to a set of frequent item sets for which the

system maintains statistics, estimating coverage and overlap statistics for the query, and

finally determining the best collection order given these statistics.

4.4.1. Testing the Oracular Approach.

To better evaluate the overall performance of our system, COSCO was compared not only to

CORI, as was mentioned earlier, but also against the optimal collection selection strategy.

The perfect strategy would involve iteratively selecting the collection which truly offers the

most new results given the collections already selected. This method, which we will call

Oracular, can be seen as an oracle-like method since it requires to actually know which

and how many results each collection will return for a particular query. Oracular was thus
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Figure 11. Performance of Oracular – the oracle-like collection selection approach – on the 15-
collection test bed.

implemented for the purpose of these experiments.

At this point we should specify what is meant by a “new” result. A new result is

one that is not a duplicate of a result which has been retrieved previously. We use the term

duplicate in a loose way, meaning that we consider a result to be a duplicate of another

if both are highly similar. Note that the similarity measure used is not relevant, as long

as the same measure is used when comparing the different selection approaches. In the

experiments described here, the similarity measure used was the Cosine Similarity, with

term frequencies as the term weights in a document.

Having clarified what “new” and “duplicate” results are, the performance of the

various approaches can now be analyzed. Figure 11 illustrates the overall performance of

Oracular, averaged over the set of test queries. The collection selection approaches can be
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analyzed individually with the four types of graphs present in the figure. The four graphs

are results, dup, new, and cumulative. results simply plots the average number of results

retrieved by the xth collection when calling collections in the order determined by (in this

case) Oracular. dup plots the average number of results among those retrieved by the

xth collection which had high similarity with at least one result retrieved from the x − 1

previous collections called. Similarly, new plots the average number of new results among

those retrieved. The main graph to consider in this figure is cumulative (whose y-axis is

on the right-hand side of the figure), which plots the cumulative number of new results

retrieved. cumulative truly shows how well the system can suggest the order in which the

collections should be accessed in order to retrieve the most results possible from only x

collections.

From the cumulative plot in Figure 11, Oracular clearly performs as expected, re-

trieving the bulk of the results in the first few collection calls. Notice that the dup plot

displays a counter-intuitive bell-shape curve. One would indeed expect the number of

duplicates to increase as more collections are called. In fact, this is due to the specific im-

plementation of Oracular : whenever the algorithm determined that none of the remaining

collections could provide any new result, the result retrieval process halted and the useless

collections were not called. Hence the number of duplicates shown by the plot actually

drops. Had the useless collections been called despite their void contribution, the number

of duplicates would have increased sharply towards the end of the plot, as one would expect.

The same explanation is valid for the results plot. The average number of results would not

drop as it does had the useless collections been called.
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4.4.2. Testing the CORI Approach.

We have said previously that in order to correctly assess the benefits of our approach, we

would compare its performance to that of the CORI collection selection system on the same

test bed with the same set of queries. In order for the CORI approach to function properly,

it is necessary to have some very specific statistics about each collection, including collection

and document frequencies for each term, and word counts for each collection. Fortunately

the search engine built on top of each artificial collection enabled us to have easy access

to those numbers. However, these statistics were not available for the real collections. To

solve this problem, the documents retrieved during the initial probing phase (with 1,062

queries) were considered to be a representative collection sample. Following the type of

query-sampling approach suggested in [22], the necessary collection statistics were then

estimated from that sample.

Figure 12 illustrates the overall performance of CORI, averaged over the set of test

queries. The CORI plots are naturally in sharp contrast with the Oracular plots. When

considering the cumulative plot, CORI actually achieves reasonably good performance,

although far from its performance in non-overlapping environments. The plot shows a

surprisingly close-to-constant rate of increase in the cumulative number of new results.

This can also be seen by looking at the new plot, which is relatively stable in the vicinity

of 8 new results every time a collection is called. Similarly, the dup plot seems to stay in

the vicinity of 7 to 8. This essentially means that every time a collection is called, CORI

will retrieve almost as many new results as there are duplicates, which could certainly

be expensive and inefficient. Also of interest, CORI seems to be calling first collections

which return more results, as the results plot has a general descending trend. This can be

explained by the CORI algorithm itself. Intuitively, the inverse collection frequency weight
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Figure 12. Performance of CORI on the 15-collection test bed.

used by CORI has much less importance in this scenario of overlapping collections, as most

if not all of the collections will contain each term. Therefore, the main factor contributing

to the score of a collection is the document frequency of the query terms in that collection,

which tends to increase as the collections get larger.

4.4.3. Testing COSCO.

The collection selection approach presented in this thesis was tested following the same

procedure as described previously. Figure 13 shows how COSCO performed against the test

bed and using the statistics computed by the offline component. The graphs for COSCO

clearly show an improvement over CORI. The number of duplicates is lower than the number

of new results retrieved as the number of collections called increases, up to a point where

the number of duplicates naturally surpasses the new results. Specifically, our approach was
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Figure 13. Performance of COSCO on the 15-collection test bed.

able to suggest a collection order which ensured that, on average, the first nine collections

called would return more new results than duplicates.

The number of new results retrieved follows a globally descending trend, which is

also a desirable behavior in a collection selection system, as seen in the Oracular system

performance. The irregularities observed in the dup and new plots are due to the approx-

imation made in our approach and to the fact that we are only storing statistics about

coverage and overlap in place of exact and fully descriptive data. These irregularities point

to the fact that our system cannot always determine which collection has the largest number

of new results.

In addition, the results plot is in contrast with the results plot obtained with CORI.

It shows that COSCO will prefer calling smaller collections with greater potential for new

results than simply larger collections as CORI seems to be doing. It can be seen in fact that
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in order to retrieve the most new results after the first collection, our approach chooses to

call first collections which return fewer yet new results, and only calls those larger collections

in the second half of the collection calls. Notice how the number of duplicates surpasses the

number of new results approximately at the same time those larger collections start being

called. A more comparative analysis between COSCO and CORI is given in Section 4.4.5.

4.4.4. Ablation Studies on Overlap Statistics.

In evaluating our system, we were also curious to find out to what extent the overlap statis-

tics benefited the collection selection strategy. Therefore in addition to our main solution,

discussed above, we also tested a variation of our approach which only used coverage statis-

tics to determine the collection order. In that approach, the collections are called simply in

order of decreasing estimated coverage. Figure 14 shows the performance of that approach.

It actually performs quite well through the first collections. Unfortunately it fails to cap-

ture a large number of new results before the very last collection call. This behavior can

be explained by the fact that some collections in the test bed, such as csb and citeseer for

example, often had a relatively low coverage compared to the other collections and there-

fore would not be called early even though they actually returned a large number of new

results. This is precisely what the use of overlap statistics compensates for, as we have seen

previously.

4.4.5. Comparison of the Various Approaches.

Figure 15 summarizes the previous analysis by combining the cumulative plots of each of the

four approaches we have discussed so far: Oracular, CORI, COSCO, and the coverage-only

approach. Oracular is still far superior to the three other approaches, including ours, but

it is certainly not reasonable to think a system using approximations and statistics – either
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Figure 14. Performance of a variation of our approach using only coverage statistics, on the 15-
collection test bed.
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Figure 15. Performance of Oracular, CORI, COSCO, and a variation of our approach on the
15-collection test bed.
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Figure 16. Percentage difference between the cumulative number of new results retrieved by CORI
and by COSCO.

collection and term-based or coverage and overlap-based – would be able to perform nearly

as well as the oracle-like solution. Considering this, the plots do show that not only does

COSCO perform consistently better than CORI, it also achieves a performance which is

characteristic of a good collection selection system: it retrieves more new results in the early

collection calls.

From this figure it can be seen that CORI almost consistently requires k + 1 collec-

tions to retrieve the number of results our approach retrieved in k collections. The largest

gap appears for k = 9. Both CORI and the coverage-only approach need 11 collections to

retrieve what our approach did in 9. These numbers are naturally dependent on the query

test set and the nature of the test bed, but nevertheless they probably give an idea of how

these systems would perform against each other in a larger environment. Finally it is worth

noting that the coverage-only strategy outperforms CORI in the first half of the collection

calls, before falling behind for the later half.
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Figure 16 illustrates the same experiments results under a different perspective.

The figure displays the percentage difference between the cumulative number of new results

retrieved by CORI after the xth collection and those retrieved by COSCO. In fact, through

most of the process our approach is able to retrieve between 5% and 15% more new results

than CORI, in the same number of collections.

Interestingly, the plot shows a negative percentage for the first two collections, im-

plying that COSCO retrieves fewer results than CORI. However, keep in mind that the

percentage is based on the cumulative number of additional new results. Therefore when

considering the actual number of results retrieved after the first collection – CORI retrieves

an average of 17.79 results while COSCO retrieves 17.10 results, one can realize that the

negative percentage is in fact insignificant. Similarly for the second collection call, where

both CORI and our approach retrieve an average of approximately 28 results.

Note that the negative percentage obtained for the last collection is due to another

reason. This is caused by the fact that COSCO may sometimes determine from the statistics

computed for the query that a particular collection has zero coverage, in which case we would

not call this collection even though it may in fact contain some new results. This leads to

a total number of new results that could be slightly inferior to CORI’s total.

4.4.6. Effect of the Granularity of Statistics.

Finally, we also wanted to determine how the number and granularity of the statistics stored

influenced the quality of the collection selection. To that end we ran the same experiments

using our approach with the only difference that the frequency threshold for the minimum

support for the item sets was set to 0.03%, instead of 0.05%. When setting the threshold

to 0.03% (i.e. an item set is considered frequent if it appears in 6 or more queries), the



51

computation took approximately 15 minutes and resulted in 5,791 frequent item sets. A

more detailed distribution of the frequent item sets found with both thresholds is given

in Table 4. Logically, the lower threshold should lead to more frequent item sets being

Item Set Frequency Threshold
Size 0.05% 0.03%

1 412 647
2 205 639
3 50 634
4 12 831
5 2 996
6 0 942
7 0 662
8 0 330
9 0 110

Total 681 5791

Table 4. Frequent item sets mined with different support thresholds.

identified, and thus more statistics being stored. The intuition behind this approach was

that with more frequent item sets the system might be able to approximate better the

statistics for the new incoming queries.

Unfortunately the experiments did not confirm the intuition, as shown in Figure 17.

The performance is approximately the same as when fewer item set statistics are stored.

Of the 15 data points for cumulative results, 7 show a slight improvement over the perfor-

mance using the 0.05% threshold while the remaining 8 data points show a slight decrease

in performance. These results are somewhat counter-intuitive and could be explained by

looking more closely at the way the test queries were mapped to item sets. With the 0.05%

threshold, exactly 52 queries (of 106) were mapped to item sets for which statistics were

stored. With more statistics, the number of mapped queries was 56, which is not signifi-

cantly more, and which would thus hardly improve the performance of the system since the
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Figure 17. Performance of Oracular, CORI, our approach with frequency threshold 0.03%, and our
approach with threshold 0.05%, on the 15-collection test bed.
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additional statistics do not help to map more queries.

4.4.7. Effects of Query Distribution.

It is interesting to realize that the performance of COSCO, as shown so far, was quite

satisfactory in spite of a testing scenario which would most likely not allow our system to

make full use of its underlying concepts. In particular, the set of 106 queries used to test

our system did not have the same distribution as the training queries. In fact, as mentioned

previously, only approximately 50% of the test queries were actually mapped to one or more

item sets for which statistics were stored. With the lower support threshold for frequent

item sets, 55% of the test queries were mapped.

Intuitively, since the initial assumption for our frequent item set approach was that

queries frequently asked in the past would most likely be frequently asked in the future,

we would expect our system to perform even better in a testing scenario which reflected

this assumption. To test our intuition, additional experiments on our system were thus

performed while ensuring that the query test set followed the same distribution as the

training set. Next, we briefly describe the experimental setup for this scenario and analyze

the results obtained.

4.4.7.1. Setup for additional experiments.

To achieve similar distributions in both test and training sets, the same initial list of 1,062

queries was used. We mentioned earlier that the total frequency of the 1,062 distinct queries

was 19,425. In other words, 19,425 queries were asked, among which some were identical.

The strategy here was to consider these queries independently, and thus randomly select

90% of them (i.e 17,482) for the training set, and the remaining 10% (i.e. 1,943) for the

test set. The randomization in the selection ensured that the relative distribution of queries
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was the same in both the test set and training set. Using this new set of training queries,

the offline component accomplished its three main tasks and finally stored coverage and

overlap statistics for the frequent item sets present in the training set. The number of

frequent item sets identified was 621 and 1.2MB were required to store their corresponding

statistics. Finally, the test set was processed by our online component, as explained in

previous sections of this thesis.

4.4.7.2. Performance of COSCO with improved distribution of test queries.

With the new experimental setup, approximately 90% of the test queries were successfully

mapped to an item set for which the offline component had stored statistics. Figure 18 shows

how COSCO performed against the new test bed and using the newly computed coverage

and overlap statistics. As before, the four graphs are results, dup, new, and cumulative.

The results are somewhat similar to those obtained previously, but there are significant

improvements in some aspects which confirm our intuition. COSCO again ensures that the

number of new results retrieved is larger than the number of duplicates in the first few

collections being accessed, and it does so through the first 8 collections in the ordering. The

most noticeable difference with the results obtained with the first query test set (shown in

Figure 13) appears in the new plot of Figure 18, which offers a greatly improved regularity

in its descending trend. Recall that the new plot with the first test set had a descending

trend but showed many irregularities. The improved regularity demonstrates that when

our initial assumption – stating that future queries will have similar distribution to past

queries – is true, our system behaves in a quite desirable way: at any point in the collection

order, it almost consistently chooses the collection which offers the most new results, which

was not the case in our previous experiments.

Figure 19 illustrates the performance of COSCO compared to the performance of
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Figure 18. Performance of COSCO on the 15-collection test bed using a query test set with a
similar distribution as the training set.
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Figure 19. Performance of Oracular, CORI, COSCO, and the coverage-only variation of our ap-
proach on the 15-collection test bed using a query test set with a similar distribution as the training
set.
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Figure 20. Percentage difference between the cumulative number of new results retrieved by CORI
and by COSCO using a query test set with a similar distribution as the training set.

Oracular, CORI, and the coverage-only variation of our approach. With the new set of

experiments, COSCO stills outperforms CORI throughout the entire 15-collection ordering.

Naturally, Oracular is still better than all other approaches, as one would expect. Notice

that with these additional experiments, the coverage-only approach shows a performance

close to that of our main approach and also does better than CORI.

Figure 20 is perhaps more useful to realize how much better COSCO performs when

being compared to CORI. Recall that in the previous experiments our approach was able

to retrieve up to 15% more results than CORI when calling the same number of collections.

Figure 20 actually shows that our system performs even better in the new experiments. It

can in fact retrieve up to approximately 30% more results than CORI after only 3 collections,

which indicates that COSCO is much more effective in selecting the top few collections. Up

until the 8th collection our system is able to retrieve upwards of 15% more new results than

CORI. Note that only when calling the last two collections does our system retrieve less
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than 5% more new results. This decrease towards the end of the ordering is expected since

when both approaches are about to call all collections, then naturally the total number of

new results converges to the same value. The negative percentage seen for the first collection

and last collection appear for the same reasons mentioned in Section 4.4.5. It is interesting

to note, though, that unlike the results obtained previously, COSCO performs better than

CORI immediately after the first collection, and that the small negative percentage obtained

for the first collection corresponds to the difference between an average of 17.54 results for

CORI and 17.48 results for our approach, which is clearly not a significant difference.

In conclusion, these additional experiments with a test query distribution reflecting

the training queries demonstrated that our system does indeed perform significantly bet-

ter than CORI. More importantly, our set of experiments showed that even in a scenario

where future queries do not follow the distribution of past queries, our system consistently

outperforms CORI.



CHAPTER 5

Discussion and Future Work

The discussion and relevant extensions mentioned in this section relate to the ap-

proximation used in our collection selection approach. As explained in this thesis, the

approximation relies on two concepts:

1. Using only pairwise overlaps,

2. Using result-set documents for overlap computation.

Each of these approximations could be addressed separately to try to improve the overall

performance of the system.

5.1. Capturing Overlap Between More than Two Collections

Multi-collection overlap estimates would probably improve the collection order se-

lection. In fact, the problem which arises from using only pairwise overlaps, as done in

COSCO, is the following: when considering the next collection to add to the ordering, any

overlap that the additional collection may have with the collections selected earlier may be

accounted for several times, thereby wrongly estimating the total overlap between the new

collection and the already selected collections. This in turn could have our system wrongly
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underestimate the benefit of calling a specific collection. This is the price our approach

must pay in order to keep the statistics computation and storage low.

A possible extension for our approach would thus be to compute and use overlap

statistics for all possible collection sets, determine whether this improves the collection selec-

tion process, and if so analyze to what extent. Of course, any benefit of this strategy would

have to be weighted against the exponential cost – in terms of the number of collections –

of computing all these overlap statistics.

Not only would that cost be exponential, but it would also depend on how difficult it

is to evaluate the level of overlap between n collections. As mentioned in Section 3.2, there

is no trivial way of estimating the overlap between more than two collections. The fact

that we are dealing with a text domain and hence similarity of documents – as opposed to

equality of tuples – turns the multi-collection overlap computation into a difficult and costly

problem. Recall the brief example from Section 3.2.1 where some results in C1 overlapping

with results in C2 could overlap with results in C3 even though there is no overlap between

C2 and C3. In such a case, what would be an efficient yet useful way of quantifying the

overlap? As the number of collections being considered grows, this type of problem will

naturally occur more frequently.

5.2. Computing Result-level Overlap

Our overlap statistics are actually approximations of the true overlap between col-

lections. The approximation comes from using the result-set document of each collection

for a particular query, instead of the actual results. The assumption was that the overlap

between the result-set documents of two collections could effectively represent the “true”

overlap between both collections.
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In fact, a more precise overlap estimation would consider the overlap between results

taken independently of each other, and then estimate the overall overlap between the collec-

tions. Result-level overlap would require each result-set document (one per query for each

collection) to be decomposed into individual result documents. The overlap computation

between two collections for a particular query would then need to be performed on a result-

to-result basis. The similarity of each pair of results would be computed, and similarities

above a certain threshold would represent overlap. The overlap between two collections

would thus be the number of returned documents that were highly similar. However this

could lead to cases where a single result from a collection is similar to several results from

the second collection, as was shown in Figure 4. This situation could be addressed by

ensuring that a document is involved in only one overlapping pair, possibly the one with

greatest similarity.

As with the previous proposed extension, the advantage of estimating and using

result-level overlap would have to be weighted against the added cost of computation. Fur-

thermore, it is worth noting that combining both this proposed extension and the previous

one – thus aiming at multi-collection result-level overlaps – could definitely lead to more

accurate statistics but would most likely be a major challenge in terms of computation.



CHAPTER 6

Conclusion

This thesis has addressed the issue of collection selection for information retrieval

in an environment composed of overlapping collections. It was shown that most of the

collection selection approaches which have been proposed so far are not designed to effec-

tively handle significant overlap between collections. These techniques would automatically

select collections by the relevance of their content even though some collections would not

provide any new results given those that had already been retrieved. In fact, the previous

approaches generally assumed that the collections formed a perfect partition of all available

documents, which works well for the specific strategies used, but which is certainly not a

realistic assumption in the domain of Internet text collections and search engines.

We thus presented COSCO, a selection approach which took into consideration the

overlap between collections before determining which collection ought to be called next.

The strategy consisted in having an online and offline component. The later of the two

was responsible for computing and storing coverage and overlap statistics with respect to

frequently asked keyword sets. When a new query was asked, the online component would

then attempt to map the query to a set of frequent sets and their corresponding statistics

would then be used to compute the coverage and overlap statistics of the new query. Finally,

with these estimated query statistics in hand, the collections were selected by first picking
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the one with highest coverage, and then iteratively choosing the one with least overlap with

the collections previously selected.

Experiments were performed with the intention of showing how COSCO would per-

form with a set of overlapping collections. The results of the experiments demonstrate

that on the same set of collections and test queries, our approach achieves better results

than CORI, the system usually picked as being the most reliable of the current collection

selection approaches. When directly compared to CORI, COSCO lead to more new results

being retrieved in the same number of collections. This is ultimately what the perfect col-

lection selection method should guarantee: that the set of collections accessed results in the

maximum possible number of new results obtainable from that many collections. Although

we have shown and acknowledged that our system can obviously not pretend to achieve

the same oracle-like behavior as the Oracular approach, it does provide significantly bet-

ter collection orders than CORI and seems to be adopting the same type of behavior as

Oracular. We have also shown that using coverage statistics alone cannot achieve the same

quality of results. Finally, noting that COSCO outperformed CORI despite experiments

which did not constitute the best possible scenario for our approach, we also showed that

when the distribution of the test queries reflects the distribution of the training queries,

then our system performs even better against CORI, which demonstrates the robustness of

our approach.
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