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590 A - Research Seminar in Artificial Intelligence

Autumn Quarter 2007

Faculty organizer: Mausam

Day / Time: Fridays 3:30-4:20
Location: EEB 003

Theme: The Future of AI

The theme for CSE590A will be 'The Future of AT'. We will present talks from several seasoned researchers regarding their vision for AL The hope is that the seminars
will excite all of us regarding the role of AT in our future, intrigue and puzzle us by the burning open research questions and hopefully also provoke us in thinking about a
broader, long-term vision for our own research. The format will be informal and interactive and we expect to have fun discussions after the talks.

Mailing List

We will not use the cse590a mailing list. Instead, announcements about the seminar will go to uw-ai. If you do not already subscribe to uw-ai. then join by sending mail to
uw-ai-request@cs.washington.edu, with the line "subscribe listname" in the body of the message. You are encouraged to discuss the presentations on the mailing list.

Calendar
Speaker Title
September 28 |[No class, Welcome TGIF!
October 5 Eric Horvitz. Microsoft Research The Future of AI
October 12 |Wolfram Burgard, University of Freiburg The Future of AT: a Robotics Perspective
October 19 |Benjamin Grosof., Semantic Technologies. Vulcan Inc. ||The Future of AL with a Semantic and Business Focus
October 26  ||Pedro Domingos, University of Washington How We're Going to Solve the AT Problem

Future of Al: Darned Humans--can't live with them and can't live without them (Audio)

The Future of AT: Learning. Manipulating. Generating. and Recognizing Activities

[November 2 ||Subbarao Kambhampati. Arizona State University

November 9 |Thomas Dietterich, Oregon State University

November 16

Dieter Fox, University of Washington

Future of Al: Interacting with the phvsical world

November 23

No class. Happy Thanksgiving!

November 30

Dan Weld, University of Washington

The Future of Al

December 7

Oren Etzioni, University of Washington

Paradigm Shift in AT




Human-Aware Al

(aka Darned Humans:
Can’t Live with them. Can’t Live without them)

Subbarao Kambhampati
Arizona State University

Given at U. Washington on 11/2/2007



Al’ s Curious Ambivalence to humans..

* Our systems seem
happiest

* either far away from
humans

* Or in an adversarial
stance with humans

You want to help humanity, it is the people that you just can 't stand...



What happened to Co-existence?

« Whither McCarthy’ s advice taker?
e ..or Janet Kolodner’ s house wife?

e ...or even Dave’ s HAL?
* (with hopefully a less sinister voice)

wA4,
fuman: ware Al







Musk, Wozniak and Hawking urge ban

on warfare Al

More than 1,000 experts and
warning of military artificial i
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Netflix's Hastings: B
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Before Reed Hastings cofounded a little compg
changing the way we watch TV, he was an artifj

Al has come a long way since Hastings got his
in 1988. But he still follows developments in th)
conversation on stage today at the DLD Confer|
@ Hastings said he was far less worried about log
apocalypse than are many other observers, su

“Some people worry about what happens when machine intelligence is too
strong,” Hastings said. “That's like worrying about our Mars colony and people
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Musk, Wozniak and Hawking urge ban
on warfare Al and autonomous weapons

More than 1,000 experts and leading robotics researchers sign open letter
waming of military artificial intelligence arms race

T

‘Lmb (

Netflix's Hastings: Battle for Earth will be between Al
machlnes and genetlcally modified humans

TAGS: Al, GENETICS, NETFLIX, REED HASTINGS

Stephen Hawking says he believes the key to
saving humanity will be colonizing other

7 planets. But the renowned physicist, whose
BeforeReedHas:r:;:founuenahmecompar’ycalledNetﬂlx which is now rEcEnt |E'|:ture L‘Iri” I::E brﬂadcast ﬂext WEEk,

.

changing the way we watch TV, he was an artificial intelligence engineer.

does not think that will happen soon.
BBC News

in 1988. But he still follows developments in the field closely. And during a
conversation on stage today at the DLD Conference in Munich, Germary
Hastings said he was far less worried about looming threats of an Al-triggered

@ Al has come a long way since Hastings got his masters from Stanford University

apocalypse than are many other observers, such as Tesla's Elon Musk.

“Some people worry about what happens when machine intelligence is too
strong,” Hastings said. “That's like worrying about our Mars colony and people
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Al’ s Curious Ambivalence to humans..

* QOur systems seem
happiest

— either far away from
humans

— or in an adversarial
stance with humans

You want to help humanity, it is the people that you just can 't stand...



Planning: The Canonical View

Problem  ========== 1
Specification v

/" PLANNER

Fully Specified
Action Model

Fully Specified
Goals

Completely Known
(Initial) World State/

Plan (Handed off

@ But humans in the loop can ruin a really a perfect day ® for Execution) .



Human-in-the-Loop

Planning

* In many scenarios, humans are part of the
planning loop, because the planner:

* Needs to plan to avoid them
 Human-Aware Planning

» Needs to provide decision support to
humans

« Because “planning” in some
scenarios is too important to
be left to automated planners

* “Mixed-initiative Planning”
“Human-Centered Planning”
“Crowd-Sourced Planning”

(May need) help from humans

« Mixed-initiative planning;
“Symbiotic autonomy”
* Needs to team with them

* Human-robot teaming;
Collaborative planning

Recognitionf

Results (& Explanations)

Goal / Intent Recognition,
I Model learning e 4}

Decision
. Model '

Mode e p\
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cal Viewy

Problem  ========== I
Specification v

This old model - / PLANNER \
needs to be : '
replaced. * r 5
% ’ W

Planning: The

Fully Specified
Action Model

Fully Specified
Goals

Completely Known
(Initial) World State/

Plan (Handed off

@ But humans in the loop can ruin a really a perfect day ® for Execution) "
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Human-in-the-Loop Planning &
Decision Support

rakaposhi.eas.asu.edu/hilp-tutorial

Subbarao Kambhampati

. . . AAAI-15 Austin, Texas USA
AFIZU na Sta te U nive rSIty % The First Winter Al Conference!
Kartik Talamadupula -

IBM T.J. Watson Research Center
Funding from ONR, ARO and NSF
gratefully acknowledged 1
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Dimensions of Variation In
Human in the Loop Planning

« Cooperation Modality
« Awareness, Interaction, Teaming

« Communication Modality
« Stigmergic, Custom Interfaces, Speech/NLP

* What is Communicated
* Goals, preferences, plan constraints, new goals

« Knowledge Level (Who knows what)

* Incomplete knowledge about human’s goals as well
as capabilities

24



Challenges in Human-in-the-loop
Planning

Interpret what humans are doing based on incomplete
human and domain models (Modeling)

— Plan/goal/intent recognition

Plan with incomplete domain models (Decision Making)
— Robust planning/execution support with “lite” models
— Proactive teaming support

Explanations/Excuses (Interaction/Communication)
— How should the human and robot coordinate

Understand effective interactions between humans and
machines (Evaluation)

— Human factor study



Human-in-the-Loop

Planning

* In many scenarios, humans are part of the
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Agenda for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

* How to make planned behavior explainable to
the human in the loop

« Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 27



Manipulative (proximal) vs.
Cognitive (remote) Teaming

* Much of the work in human-robot
teaming has been focused on
manipulation tasks where the human
and the robot are in close proximity

» Here the plans are mostly path
planning/manipulator planning.

« Our focus has been on tasks that
require cognitive (in addition to
manipulative) decisions—as is
typically the case with remote human- =
robot collaboration in urban search
and rescue scenarios. B

Humai wa}ee'cisiég akig@f;

=t 4
dEvaluation?

S
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Agenda for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

* How to make planned behavior explainable to
the human in the loop

« Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 29
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How do we get the Planning Models?
(e.g. of the human in the loop)

e Typically multi-agent planning methods assume
all agents use similar models

— E.g. All agents with STRIPS action models
* Unreasonable to expect similar sorts of action
models for the robot and the human..

— Human models (from the Robot’s point of view) are
likely to be highly incomplete (as, of course, Robot’s
model from the human point of view)

 So how do we represent (and handle) incomplete
models of human capabilities?



Challenges in acquiring Human Models

* The temptation is to go with existing action
models & introduce incompleteness
— Atomic: MDP/POMDP

— Factored: STRIPS, RDDL, HTN etc
* Example work by Garland&Lesh(2002)

* While they are fine if someone hand-specifies
them, they are much harder to learn, given
the kinds of information that is likely to be
available.

— Significant incompleteness in observations

* Sensor occlusion, noisy observations,
— [Zhuo & Kambhampati, IJCAI 2013]

— There may be significant gaps between
observations

Complete Plan Trace



Planning
Support ’

Complete Plan Trace

Partial Plan Trace

Plan Segments
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Spectrum of Domain Models

’N Increasing degree of incompleteness of planning models
[ Capability Model ]
[ Word Vector Model ] T [ Incomplete PDDL ]
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Partial PDDL Domain Models

Each action a Is associated with possible precond and
effects (in addition to the normal precond/eff):

* PreP(a) [p]: set of propositions that a might depend on
during execution

« AddP(a) [p]: : set of propositions that a might add after

execution
* DelP(a) [p]: : set of propositions that a might delete after
execution
pl

Example: An action a that is ol @
known to depend on p1l, add p4 p2
and delete p3. In addition, it might - 3
have p3 as its precondition, might p3 P

add p2 and might delete p1 after
execution.

N
,,,,,,,,,,,,,,,,,,

||||||



There are known knowns;
there are things we know
that we know. There are
known unknowns; that is
to say, there are things
that we now know we
don’t know. But there are
also unknown unknowns;
there are things we do not
know we don’t know.




Solution Concept: Robust Plans

« Solution concept:

* Robust plan

» Plan is highly robust if executable in
large number of most-likely
candidate models

 Robustness measure

« Set of candidate domain models S
(consistent with the given
deterministic partial domain model
D)

» A complete but unknown domain
model D*

« Can be any model in S

Il

R(r) 9K

ITT| Number of candidate models with
which the plan succeeds

K =) PreP(a) + AddP (a) + DelP(a)

PO

©) 7
'l s
. a,
/
!
" .‘!
WP
_.f
;
/
/
‘-.. j. '-u
Y )

] ]

N P @
state s, (initial state) state s, state s, (goal state)
Candidate models of plan 1 2|3 4 5 6 7 8

a,| relies on  p, yes | yes | yes [ yes | no no no no

a, deletes p, yes | yes | no | no | ves | yes | no no

a, adds p. yes | no | yes | no | ves no | ves no

Plan status fail | fail | fail | fail [succeed| fail [[succeed|succeed
Legend

precondition [[«]——> additive efiect [ }-==» 233?&235 effect
—@+ delete effect -@*

possible
precondition

possible
delete effect

Robustness value: 3/8

Easily generalized to consider model likelihood

@p is true

o
tpipis false




Generating Robust Plans

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

« Compilation approach: Compile into a | Tonicle Soerion
(Probabilistic) Conformant Planning e
problem
' e o S Manad
* One “unobservable” variable per Pre rocessing
each possible effect/precondition ——
- Significant initial state :—/
uncertainty

« Can adapt a probabilistic conformant
planner such as POND [JAIR, 2006;

AlJ 2008] o
» Direct approach: Bias a planner’s
search towards more robust plans Initial Current
. . tat tat
* Heuristically assess the robustness N A g 4 O
of partial plans O - B O

* Need to use the (approximate) O
robustness assessment S

uccessor Relaxed plans are

procedures states  used to evaluate

* A novel extension to relaxed successor states
planning heuristics to take

robustness into account
[Nguyen et al; NIPS 2013; Nguyen & Kambhampati, ICAPS 2014]




Synthesizing Robust Plans: A Compilation

Incomplete model Complete model

Complete world state Belief state

(Conformant Probabilistic
Planning)
xq"@ xp (0.5) x4 (0.7) x,(0.2)

xp R . . I} . .
@ ----- a @ ‘ Resulting action a’ with eight
X, '@ conditional effects.
Cond: x, Ap Ax, Ax, EffiqA-r

[NIPS 2013]



Synthesizing Robust Plans: A Heuristic Search
** Anytime approach

1. Initialize: § =0 h(s,8) =100
2. Repeat

“Findplanms.t. R(w) > 6
"~ Better state found.
*If plan found: 6 = R(m) h(s'. 8) = 55
Until time bound reaches A
3. Return r and R(m) if plan found

h(s”",6) =0

h(s,8): how faritis
Goal reached

approximately from s to a goal
state so that the resulting plan 6 « R(m)

has approximate robustness > 9.

[ICAPS 2014]



*** Approximate plan robustness
» Lower bound

1(%) = nPr(c) < WMC()

CEX

."'T'I;c"".' """"""""" ’. l(znk Azﬁ) >0

Relaxed plan 7@

> Upper bound: divide X into independent sets X!
cexXl

uX) = 1_[ min Pr(c) = WMC(Z)
i

® - I Py f u(Z; )>6

Ty then compute WMC (my,)



[ ] [ ]
Increasing degree of incompleteness of planning models
a p a I I y O e Capability Model

Word Vector Model Incomplete PDDL

A capability: B o = g m—
P(X¢ = SE | Xg = S[) > 5 =>5;
A conditional probability
(specified by a partial initial and eventual state)
T-gap capability model
Initial State A Eventual State
strong(AG) stror%(AG)
Synchronic =
. has_money(AG) has_money(AG)
links
can_carry(AG,PKG can_carry(AG,PKG
_carry( ) I _carry )
has_trolley(AG)| Diachronic has_trcﬁley(AG)
deliverable(AG,PKG) links deliverablS(AG,PKG)
delivered(PKG) deliverdd(PKG)
[AAMAS 2015]

(Generalization of 2-TBN model used in RDDL)
(Imperfect analogy to) HTN Models. A capability can be thought of as an abstract task "



Capability Models

We start with the “default assumption” that domain models are
incomplete

* DEFINITION (CAPABILITY) — Given an agent, a
capability is a mapping — [0, 1], which is an
assertion about the probabiii he existence of a
plan in fewer than or equal to
changes that can connect the t states.

->: denote an atomic state change

{has_water(AG), has_coffee_beans(AG)}
-> {has_boilling_water(AG), has_coffee beans(AG)}

-> {has_boilling_water(AG), has_ground_coffee_beans(AG)}
> {has_coffee(AG)} Bound on the

gaps between
observations

Partial states

WhenT =2 { has_water(AG) => has_ground_coffee_beans(AG)
has_boiling_water(AG) => has_coffee(AG)...

{ ... (including all capabilities when T = 2)
WhenT = 3 "L has_water(AG) => has_coffee(AG) v



Parameter Learning pewe f

We assume that the maximum number of missing state

observations between any two observations in the partial
plan trace is upper bounded by T

DEFINITION (T-GAP PARTIAL PLAN TRACE). A T-gap
partial plan trace is a partial plan trace in which all
Kig, 5.;<=T

Learning samples

Apply Bayesian learning (assuming beta distributions):

p(fij| D) = beta(fij; aij + iz, bis + tij)

43



Planning with Capability Models

Initial State | Eventual State -
strong(AG) strong(AG)
/ has_money(AG) has_mgney(AG)
can_carry(AG,PKG) can_carry(AG,PKG)
=
has._trolley(AG) has_trolley(AG)
deliverable(AG,PKG) deliverable(AG,PKG)
delivered(PKG) deIiver&:l(PKG)

T-gap capability model
" Any planning state is a set of complete states: a belief state
{(complete state 1), (complete state 2)...}

= Select a capability to apply:s,=>s, = P(Xy = sg| X4 = s1)

= For each s* in the belief state,

> Applicable g7 C 8™
Success: compute a set of resulting states s, sg C s

P(s) = P(s*=3s)  P(X4=s|Xs=25"

Failure: no change P(s* = s5) P(Xs = s5|Xs = s%)
» Inapplicable — no change to s* LORS



Action Vector Models

* View observed action sequences as “sentences” in a
language whose “words” are the actions

* Apply skip-gram models to these sequences and
embed the action “words” in a higher dimensional
space

— The proximity of the action words in that space is seen as
their “affinity”

* Use the action affinities as a way to drive planning
and plan recognition

d f mpl s of pl model
Capability Model
Word Vector Model T | Incomplete PDDL
Partial Model: f
N W Shallow Models §§ Approximate Models w del
Plannin g No pl Pl tiquing Planning Robust plan g t Traditional
Support [ oo mpl Guidance nd managem pl g

1/27/2016 UNCLASSIFIED 45



Problem Formulation

* The recognition problem defined by:

(L, O, A)
— L: a plan library, e.g.,

plan 1: pick-up-B stack-B-A pick-up-D stack-D-C

plan 2: unstack-B-A put-down-B unstack-D-C put-down-D
plan 3: pick-up-B stack-B-A pick-up-C stack-C-B pick-up-D
stack-D-C

— O: a sequence of observations, e.g.,

pick-up-B NULL unstack-D-C put-down-D NULL
stack-C-B NULL NULL

— A: A set of actions

* Task: find a plan to best explain O:

pick-up-B stack-B-A unstack-D-C put-down-D
pick-up-C stack- C-B pick-up-D stack-D-C

Note that:

* without initial
states/goals/intermedia
te statesin L

* |pl=10]

 pisnotnecessarilyinlL



Learn vectors of actions

Plan 1 Plan 2 Plan T
i I i
[ I | i \
® =
all a12 see aln a21 a22 see a2n see aTl aTz see aTn T | L|

\ l / * cis the window size
of action context

Learn vectors w; for a; in A by optimizing

T
% Z Z log p(wy 4 |we) ’

t=1 —c<j<c,j£0 The basic probability
defined by hierarchical
softmax, [cf. Mikolov et
al. NIPS-13]




Action Vector Models can be used to
Recognize Plans

With the learnt vectors w, we can predict the target
plan (as the most consistent with the affinities). We
use an EM %rocedure to speedup the prediction.

F@) =2, D

k=1 —c<j=<c,j#0

The target plan
to be recognized

accuracy

I o o4
w o o
=) ) =) =)

I
N
=]

o
e
=

(a) blocks
B--F -3 _ _
0.78 | B--g--0
= .
S . .
058 —~—— e | -
0.48
- B -DUPE
—X- = ARMS+PRP

o
=]

0.058 0.1 0.158 0.2@ 0.250

percentage of unobserved action

accuracy
o ©o o o o o o
= N w w [e)] ~ [o:]
= = =] = = =] =}

o
=

0.42

(b) depots

of B --B - - --B--0

K.
\.
NN
N

»

= 8 —=DupE

—X- = ARMS+PRP2

0.05@ 0.1@ 0.158 0.2@ 0.25@

percentage of unobserved actions

log p(wi 45 |w)

accuracy
o o o o o o o
= N w w D ~ o]

o
=

0.40 |

(c) driverlog

- B8 -pupra
—X- = ARMS+PRPZ

g - - --B--5--0

N
“

0.058 0.1@ 0.15@ 0.2@ 0.25@

percentage of unobserved actions

M = |the target plan]|

Algorithm 1 Framework of our DUP algorithm

Input: plan library £, observed actions O
Output: plan p

2 AR

1: learn vector representation of actions
2:

initialize ', , with 1/M for all 0 € A, when k is an unob-
served action index
while the maximal number of repetitions is not reached do
sample unobserved actions in @ based on I'
update I" based on Equation (6)
project I' to [0,1]
end while
select actions for unobserved actions with the largest weights
inl’
return p

[AAMAS16]



Agenda for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

* How to make planned behavior explainable to
the human in the loop

« Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 49




How to plan to be useful?

* Depends on the modality of interaction
between the humans and the robot

 Are they in an explicit team vs. cohabiting the
same environment?

« Are they communicating or is it stigmergic
collaboration?

« Our early work focused on issues In
explicit teaming and full communication

50



. . &
Planning for Human-Robot Teaming Problem

Problem Updates Specificatig

TISTIO
Open World Goals - [ ]
1 Assimilate Sensor
When to start 153 | .
’ sensing? I Information
» Indicator to start 1 PLANNER
sensing
: Sapa Replan
> What to look for? I
> Object type 1
> Object properties I
: i I @
> When to stop sensing? /5’ ACtiOI’\ Model

> When does the planner know the world is closed?

> Why should the robot sense?
> Does the object fulfill a goal?
> What is the reward? Is it a bonus?

Talamadupula, Benton et al., ACM TIST 2010]

<EillySpesiied—>

] Goals
] Planning for A £
1 Replanning for Changing Worlds I Model Updates
| : (via natural language)
|
I > New Information I » “To go into a room when you
1 > Sensors : are at a closed door, push it
| one meter.”
1 ¥ HOmEn At 1 > greﬁgndition: “you are at a closed
[e]o)
: ) New G03|S : > Acttiop‘ definition: “push it one
metel
: > Orders: Humans : » Effect: “go into a room”
> Requests
! ! Re , NLP Module
: i. Ref Iuti
I ) Requ"-ement I_ . :I P:;Ir:;ce resolution
1 » New plan that works in new world (state) iii.  Background knowledge
1 » Achieves the changed goals iv.  Action submission (to planner)

Talamadupula et al. AAAI10] s [Cantrell, Talamadupula et al., HRI 2012] [In collaboration with hrilab, Tufts University]
e Wamil Talam. . i Nafanca n

[IROS14]

~



Human-Robot Cohabitation

Behavior Modeling - Human Aware Planning

 Humans and robots
sharing workspace (not
necessarily as a team).

* Need for human-aware
planning for modeling a
robot’s interactions with
its human colleagues.




Stigmergic Collaboration

in human robot cohabitation

* The robot directly interacts with the human’s plans to
assist/coordinate by making positive interventions

e e.g. planning for serendipity

 The robot coordinates it’s own behavior to suit the
human’s predicted plans to minimize conflicts

e e.g. planning with conflicts on shared resources

Much of the planning challenge is about
defining the interaction constraints that
affect the robot’s planning process.
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Current Use Case

Urban Search and Rescue (USAR) scenario

« Commander can perform triage (needs to get a medkit to do so)

* The Robot can also conduct triage or deliver medkits if requested

* The medkits are the shared resources here — the robot must de-conflict its
plans to use the medkit with that of the human’s.

Tr%ge
Location Medkitl Medkit 2
Room 1 Room 2 Room 3 l Room 4 Room 5 Room & l Room 7 Room &
™ T 1

H ¥ I
Hall 1 Hall 2 Hall 3 Hall 4

Deliver Hall 5 Hall & Hall 7 Hall 8
2
——
Room 3 Room 10 Room 11 & Room 12 Room13 ‘
Robot
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Planning for Serendipity

A running example

CommX has to conduct triage in room1.

A

Triage
Location

Medkit1

Medkit 2 Room 4 Room 5

Room 3 l
:I: -

Hall 3 Hall 4 Hall 5

Room 6 Room 7 Room 8

R

Hall 6 Hall 7 Hall 8

Room 2

Room 11 Room13

Optimal plan for CommX involves picking up medkitl in room2.

|
Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015
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Planning for Serendipity

A running example

CommX has to conduct triage in room1.

A
riage . .
Locatgion Medkit 1 Medkit 2 Room 6 Room 7 Room 8
Room 1
Room 2
— Deliver s —
Hall 1 Fa“ 2 Hall3 | o | medkit Hall 6 Hall 7 Hall 8
\ ——
HOORS Room 10 Room 11 Room12 Room13 ‘
Comm X

The robot fetches medkit2 from room3 and drops it off in hal1l3 before
CommX passes by, thus saving him the effort to get a medkit himself.

|
g Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos

David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015
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Planning for Serendipity

A running example

CommX has to conduct triage in room1.

A
riage ; -
Location Room 2 Medkit 2 Room 4 Room S Room 6 Medkitl | Room 3
Room 1
Room 3 l Room 7

Room 9

Room 11 Room13

For the current configuration, the optimal plan for CommX involves picking
upmedkitlin room7.

|
g Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos

David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015



Planning for Serendipity

A running example

CommX has to conduct triage in room1.

Tr%ge R v
Location oom 2 Medkit 2 Room 4 ~Room 5 Room 6 Medkitl | Room 8
Room 1 Room 3 { JAN _I Roow 7
— T == " Deliver R — — o —

Hall 1 Hall 2 Hall3 edkit S5 Hall 6 Hall 7 %, Hallg

Room 9

Room 11 Room13

The previous serendipitous intervention becomes redundant here because
CommX has already acquired a medkit by the time the robot can intervene.

|
Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015
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Planning for Serendipity

A running example

CommX has to conduct triage in room1.

o
riage - -
Loc atgion Room 2 Medkit 2 Room 4 Room 5 Room 6 Medkitl | Room 8
Room 1
Room 3 Room 7
—T r Del:ivsr e . — N 5 —)
Hall 1 Hall 2 Hall 3 o= | medkit Hall 6 Hall 7 Hall 8
——
Room 9 Room 11 Room13

However, if the robot were able to communicate it’s intention to intervene,
the previous plan for a serendipitous interception still holds.

|
Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015




Plan Interruptibility

Positively removable subplan

Definition 2.0 : 1f plan 7py a,as,...,ar) of

=
human H with 0(Ig,7x) | Gpg, then any subplan/v

0

the

ij

g = (ai,....a5),1 < i < j < |7yl is positively

A plan is interruptible iff it has at least
one positively removable subplan.

iff Jmy for the set of agents A = {R, H} (R
being the robot) such that §'(|J,c4 o 7a) = Gu where,

for some i’ > 1, ’H’A\(H) = ( - TI'H[I D1 — 1]) . TI'A(H)[Z :

z‘f

[—]

* means concatenation). \

* (Cmulj+1:|myul]) and C(mp(H)) < C(my) (here

time steps

i <t<iis when the

(serendipitous) interactions can occur

we specify the rest of the

plan to be subsequences of the original plan which ensures
that the human does not need to go outside his original plan
sans the part where the actual interaction occurs.

Serendipitous

! exceptions here

j

Human's individual plan
(as predicted) TH ay az

ﬂ'g S (a,;,;,...,aj)

ar

.

Human’s component in
the composite plan

’."TA(H) = ( g ’H'H[l

ci—1]) e ma(H)[i 2]+

(Cauli+1:|rul])

]
Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.

Ham bUrg 2015
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Plan Preservation

Removable subplans # Serendipitous exceptions

* Don’t disturb the plan prefix before the serendipitous intervention
* not necessary if the robot is able to communicate intentions
* The resulting world state after the serendipitous intervention models the
original intended state of the human at that point
* doesn’t plan for further assistance

. | Serendipitous .
I exceptions here )
Human’s individual plan ij
(as predicted) TH ay  az | .. T = (T a’j) ar
Human'’s component in o . .y . .
the composite plan WA(H) - ( C ﬂ-H[l = 1]) ¢ WA(H)[Z 1l ] ¢ ( - ﬂ-H[j +1: |7TH|])
without communication &
’ITA(H)[]. T — ].] = 'JTH[]. Dy — ].] 5’(U(¥EA]IQ=WA[]- 7]} '= 5(]1]—],71’}1[1 7])
where i = argminfa = m (H)[i] Aa ¢ 7y, Va € Ap such that & (U, s Iou7a) F G
and C(ma(H)) < C(7y)
]
Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, | nos

David Smith, Subbarao Kambhampati. IROS 2015, Hamburg. Hamburg 2015
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Planning with Resource Conflicts

Overview & System Components

 Information from the predicted plans concisely represented as
resource profiles and fed to the planning stage.

.‘ " . . é Observations , P -
; ,,TT JT‘ - r l "W Goal Recognition
ation Med kit Commx | Medikit
Rox Room 2 Room 3 Room &
11 Hall 2 'H.;na Ha“; Halls a:m"i } Hall6_l l l l l Set Of
. 1 b Predicted Plans
Environment

Belief @® ;’,ﬁ’a; l l Resource Profiles | ™’ # ) 77

.

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang,
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem. [AAMAS].G]

Robot




Resource Profiles

different levels of abstraction

* We can have profiles at different levels of abstraction to reason about
different aspects of the plan

L4 YeS/nO Of resource usage I = {at(commX, rooml), at(mkl, room3), connected(rooml, room2),

connected (room2, room3), connected(rooml, halll) ,h connected(halll, room2)}

* Profiles over actual groundings

mkl in use

of the resource variables Plan 1 - p(m) = 0.6 L
0 sec: move(rooml, room2) : 3 1 0.5 !
2 sec: move (room2, room3) ' ‘0 5
4 sec: pick-up(mkl, room3) : : | 0.2 |
5 sec: triage (room3 : .
ge ( ) . | | .
A 8 sec: ~end~ 0 t
. Triage
Robot Location Medikit1 Medikit 2 wkl in room3
Room 1 Room 2 Room 3 l Room 4 Plan 2 - p(ﬂz) = 0.4 :
LI I sec: move (rooml, halll)
Hall 1 Hall 2 Hall 3 Hall 4 Hall 5

= Deliver sec: move (halll, room2)
Medikit

sec: pick-up(mkl, room3)

0
2
4 sec: move (room2, room3)
6
7

sec: triage (room3) 0

Comm X “

Room 5 10 sec: ~end~

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang,
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem.
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Modeling Behavior - Compromise

Robot settles for a suboptimal plan

CommX has to do triage in room1, Robot Is tasked to conduct triage in hall3 —
optimal plans require medkit1 from room?2 for both agents.

01 - MOVE_ROBOT_ROOM1_HALL1

02 - MOVE_ROBOT_HALL1_HALL2

03 - MOVE_ROBOT_HALLZ2_HALL3

04 - MOVE_ROBOT_HALL3 HALLA4

05 - MOVE_REVERSE_ROBOT_HALL4_ROOM4
06 — MOVE_REVERSE_ROBOT_ROOM4_ROOM3
07 - PICK _UP_MEDKIT ROBOT_ MK2_ ROOM3
08 - MOVE_ROBOT_ROOM3_ROOMA4

09 - MOVE_ROBOT_ROOM4_ HALLA4

10 - MOVE_REVERSE_ROBOT_HALL4_HALL3
11 - CONDUCT_TRIAGE_ROBOT_ HALL3

12 - DROP_OFF_ROBOT_MK2 HALL3

A

Triage
Location

Medikit 2

Medikit1

Robot

Room 2 Room 3

Room 1

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang,
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem.
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Modeling Behavior - Opportunism

Robot senses favourable turn of events

CommX has to do triage in room1, Robot is tasked to conduct triage in hall3 —
optimal plans require medkit1 from room?2 for both agents.

01 - NOOPE A
02 — NOOP o e
03 - NOOP W_hen planning horizon Robot | ton Medikit 1 Medikit 2
- is increased...
12 - NOOF Room 1 Room 2 Room 3
13 - NOOP —
14 - PICK_UP_MEDKIT_ROBOT_MKI1_ROOMI1
15 - MOVE_ROBOT_ROOM1_HALLI Hall 4 Hall 5

16 — MOVE_ROBOT_HALL1_ HALL2

17 — MOVE_ROBOT_HALLZ_HALL3

18 - CONDUCT_TRIAGE_ROBOT_ HALL3
19 — DROP_OFF_ROBOT_MK1_HALL3

()
Jerusatem L sorz

David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem.

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang, c _'I'an"é



Plan Generation

Integer Programs to model interaction constraints

* We use IP-based planners to model the interaction constraints discussed so far

* Planning with Resource Conflicts * Planning for Serendipity
Minimize oyerlap between profiles Compute positively removable
produced by the robot’s plans with sub-plans that uphold the two

those predicted from the hurnan’s

pres constraints

Obj : min E“cm Efcll.':' _____ 1y CaXae + K ||S2—&4]|

{] S E;(" x "‘mt}(l - Zr za(m,l 'ru.i)
£ T(1 = 5 @a) + T( T, Tas)
Vae Ay, te {1,2,..., T} (Ta)

min ky Zae/m Zte{l,‘z.. ) Co X Tay
k23 5en Z_{eI‘()\) Z.‘.e{l,?,,,,"."} g % GMY)

Tay > (& —t)Va €y, t € {1,2,...,T} (7b)

Gfe = ZaESl} La,t

+(1 - Zuen}r Lot — Zuen; Ta) X g1 Tac i, Tot + CacanUpe, d, Tt < 1

Viegtedl,....T} (10) Vaech, tefl,....T} (10)

hpoe x G (1) > eVfe &t e {0,1,...,T—1} (11) 2acay 2ote(t 2,1} Ca X T < cost(my) (11)
§r.&2€{1,2,... . ThL &L <&+ 1 (12)
yre € {0.1}Vfe Sy, te{0,1,..., T} (13)




Evaluations - Planning for Serendipity

* We compare the reduction in cost of (overall) team plans from individual optimal plans to
planning for serendipity, with and without communication.

* The robot’s actions costs are discounted with respect to those of the human’s to
demonstrate how more and more situations become conducive to serendipitous
interventions as the robot’s actions become relatively cheaper.

* Number of serendipitous plans indicate that there are plenty of opportunities
for such serendipitous interventions.

Discount | w/o comm. | w/ comm.

0% 9.82 (1) 9.72 (13)
10% 9.81 (7) 9.65 (23)
30% 9.79 (7) 9.48 (34)

50% 9.76 (12) | 9.25 (40)
70% 9.68 (29) | 8.93 (62)
90% 9.55(32) | 8.51(70)

Average individual plan cost = 9.825

Nao with medkit O




Evaluations - Planning with Resource Conflicts

* We contrast the effect of the parameters of the IP-formulation on the plans produced.
* Increasing the planning horizon makes the robot more opportunistic
* Increasing the relative penalty for overlaps in profiles makes the robot more conservative and lowers utility

* Algorithm is robust to number of observations, but larger hypothesis sets effect the planner negatively as expected

* Complexity of the planner stage only is independent of the number of agents, and size of the
hypothesis set — advantage of the modular approach and profile representation of plans.

10 13 16 | Optimal
08 09
C| 9.0 | 5.6 | 4.53 9.0 @ & 08 Y
U || 0.46 | 0.04 | ~0 n/a 07 T 1 i I ‘
S| 10 [048[025| n/a B . 07 . o
F | 533|119 6.6 53.3 ) ] o e «—*
A o8 A
Table 2: Quality of plans produced w.r.t. 7. Opportunities ” E. 05
for opportunism explored, conflicts minimized. 3 0.4 . 2 cost
oY ——conflict G ohalet
sSuccess success
03 03
k1/ks || 0.05 0.5 5.0 02 *— 02 . — 8
1/ 3 —_— & 0—@.\*,. \'W&/m“‘q’/@’_ ~%
C 9.47 ] 6.37 | 6.31 0.5 ; 5 3 i 5 s %l 2 4 6 8 10
U 0.18 | 0.17 0.17 number of observations —> size of the hypothesis goal set —>
S 0.85 | 0.579 | 0.578
F 27.5 | 23.0 21.3

Table 1: Quality of plans produced w.r.t. ki/ks. Conserva-
tive plans result in lowered utility.




Agenda for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

 How to make planned behavior explainable to
the human in the loop

 Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 69



When is a plan “Explainable” to the human in the
loop!?

The robot generates its plan of
action using its model My

The human “interprets” this plan in
light of her understanding of the
Robot’s model M*;

M. and M"; can be quite different..

Differences can be a result of:

& Different capabilities (e.g., possible
actions)

& Different knowledge (e.g., level of argmin cost(may,) + o - dist(Tar g, Tarx )
modeling) TMp R

& Different interpretation of behaviors
(e.g., plans) interacting with the * .
world -- more than just trajectory BUt, aIaS, IVI R IS not knOWH!

planning!

70



Explainability Labeling

Problem: M™ is not known A

argmin cost(may,) + @ -|dz'st(7rMR, M%)

Solution: Learn it, but indirectly main

as a labeling scheme.. dist{(mai, oy )= F ol (’”f‘gﬂ)
al;rgﬂxfnincost(':rMR) +a-Fo %F(WMR [{S:|S: = E*(vrfwﬁ ) t!
0 1 2 Analogy: Think of learning how to write address

labels so the postal carrier can understand..

= Task labels (to associate with actions).
For example:

] y
(G)
o
o
Nay (5 2)

obs ({O$S})/g’-‘/
4

)\ N

& Collect
i nav ({C}, {S}) & Store
7 8
Y & Observe

)
)

More than one label is allowed for actions

obs ({0}, ) ounload ({S}, {0} w2g, /

(S

argmin cost(mmy,) + - F o




Learning the Labeling Scheme using CRF

Model: > Features:

¢ Conditional Random Fields (CRF & Plan features: e.g., at rover L5

1 & Action/trajectory Features: e.g.,
p(x,y) = —I1a®P(xa,¥,4) action type

More than one label is allowed for actions

Z
¢ Interaction features: e.g., distance

s : to the human

ﬁ

%z
< % . . .

& = Task labels (to associate with actions).
,g? obs ({0} {s)) =
s 4 For example:
§ &
sl L & Collect
‘é’ 3
S nav ({C}, {s}) & Store
6 7 8
e & Observe
o
S
2
o

=2

argmin cost(mmy,) + - F o
TMpg




Using Explainability Model

Preliminary results indicate that such
a scheme is reasonably effective in
picking explainable plans..

Plan selection

* Robot can generate a set of
plans and select the most
explainable/predictable plan

Plan heuristic

* Robots can use it to directly
synthesize more
explainable/predictable plans

Comparison between EXPD-SELECT and RAND-SELECT

10r o o EXPD-SELECT-EX
&--4 RAND-SELECT-EX
=@ EXPD-SELECT-PD
L. +—+ RAND-SELECT-PD

L L L L L L L
1 2 3 4 5 6 7 8 9
Maximum Number of Hidden Locations to Visit

Figure 5: Comparison of EXPD-SELECT and RAND-

SELECT
Comparison between FF-EXPD and FF
107 o o FF-EXPD-EX |]
0.9 & -o FF-EX
o8 =@ FF-EXPD-PD
- +—+¢ FF-PD
a 0.7
k=
© 0.6
>
“os
0.4}
0.3
0:2 1 2 3 4 5 6 7 8 9
Trial ID

Figure 6: Comparison of FF-EXPD and FF considering uexp

in Alg. 1.



Agenda for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

* How to make planned behavior explainable to
the human in the loop

« Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

 As the “paper clip” assistant shows, we Al’ers are
not great at guessing what humans “like” ® L




Proactive Help Can
be Disconcerting!

Do we really know what
(sort of assistance)
humans Want’) The Sentencg Finisher

We dance roand in a ring and sappode,
But the Secret octs in the middle and lbnows.




Human Factor Studies

* To understand whether human-robot teams perform
better with more intelligent/proactive robot
teammates or not

e Two studies

— Wizard-of-Oz Human-Human studies

* With Cade Bartlett and Nancy Cooke
— Cade Bartlett’s M.S. thesis (in preparation for Journal submission)

— Human-Planner studies

* To see if proactive robots that use plan recognition to anticipate
human actions help or hinder team performance

— [IROS 2015][HRI2015]

1/27/2016 UNCLASSIFIED
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Human-human Teaming Analysis In
Urban Search and Rescue

Simulated search task (Minecraft) with human playing
role of USAR robot
» 20 internal/external dyads tested

« Conditions of autonomous/intelligent or remotely controlled
robot

« Differences in SA, performance, and communications




Measures

 Performance:

* ((Rooms Marked Correctly + Correct Presses) —
(Repeated presses + Incorrect Presses)).

* SA

« External — Rooms marked correctly

 Internal — Repeated presses

» Covariates
« Spatial ability task
« Demographics
« Experience
* Robotics

 Minecraft
« Gaming

NNNNN
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Procedure

Random role assignment
Consent

Spatial ability test
Seated with divider between

Instructions (according to condition)

Search plan

Internal training

USAR task (15 minutes)

Notified of end of time targets (8 minutes in)
10 Demographics/experience/TLX

11. Debrief

12. Compensation

©CONOORAWNE



Summary of Key Findings

* Intelligent condition (vs. Remote):

Higher dyad performance
Lower external workload
Less communications (especially from external)
Tendency for Higher External SA (non-significant)
Higher Levels of External SA driven by
» Greater percent excuses

» Lower difference in spatial ability between internal and
external

» Higher internal SA (low repeat button presses)

« Communications associated with most
effective dyad performance

« Higher percent excuses (A flag for whether the
communication was related to one of the environment’s
Inconsistencies with the provided map)



Human Factor Studies

* To understand whether human-robot teams
perform better with more intelligent/proactive
robot teammates or not

 Two studies

 Wizard-of-Oz Human-Human studies

* With Cade Bartlett and Nancy Cooke
* Cade Bartlett’s M.S. thesis (in preparation for Journal submission)

* Human-Planner studies

* To see if proactive robots that use plan recognition to
anticipate human actions help or hinder team performance

e [IROS 2015][HRI 2015]
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Analysis of Proactive Support in

Human-robot teaming

Simulated search task (Webots) with human remotely
controlling a robot while collaborating with an intelligent
robot ‘Mary':




Measures

Performance:

* Time taken to treat the critically injured
casualty; time taken to treat both

Task settings:

Monitoring cameras that
can provide observations. ... . c—
« Casualties to be treated pmmic s
using medical kits in
medical rooms .
° Env'ronment Segmented | :t..“.‘j’.i...ﬁ.j.‘....‘.‘ ....................................
by doors

......



Summary of Key Findings

« Mary with a proactive support capability (vs.
without):
« Higher dyad performance

« Lower communication
« Slightly (non-significant) increased mental workload

« Mary with a proactive support capabillity in our
USAR task scenario is generally preferred

[IROS 2015; HRI 2015]



Summary for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

* How to make planned behavior explainable to
the human in the loop

« Humans will parse the behavior in terms of their
understanding of the Robot’'s model

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 85



Summary for Today

* How to learn and plan with incomplete domain
models

« Complete--Approximate--Shallow

* How to plan to be useful to the human
 Avoiding conflicts and offering serendipitous help

" Until my next update °*
@2025 Al Seminar

* How to recognize and evaluate what are the
desiderata for fluent teaming with humans

» As the “paper clip” assistant shows, we Al'ers are
not great at guessing what humans “like” ® 86







