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AI’s Curious Ambivalence to humans..

You want to help humanity, it is the people that you just can’t stand…

• Our systems seem 
happiest 

• either far away from 
humans

• or in an adversarial 
stance with humans



What happened to Co-existence?

• Whither McCarthy’s advice taker?

• ..or Janet Kolodner’s house wife?

• …or even Dave’s HAL? 
• (with hopefully a less sinister voice)
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AI is the only technology that  is going 
from disappointment to deadly
without touching beneficial.. (?)











AI is the only technology that  is going 
from disappointment to deadly
without touching beneficial.. (?)



AI is the only technology that  is going 
from disappointment to deadly
without touching beneficial.. (?)



My Plan today: Talk to 
you about what we have 
been doing about HAAI

Our specific interest: Understand 
how the planning & decision-
making aspects of AI agents 
change in Human-Machine 
cohabitation Scenarios
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Special Theme: Human Aware AI
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AI’s Curious Ambivalence to humans..

You want to help humanity, it is the people that you just can’t stand…

• Our systems seem 
happiest 
– either far away from 

humans
– or in an adversarial 

stance with humans



Planning: The Canonical View

19

Plan (Handed off 

for Execution)

Full

Problem

Specification

PLANNER

Fully Specified 

Action Model

Fully Specified 

Goals

Completely Known 

(Initial) World StateAssumption: 
Complete Action Descriptions
Fully Specified Preferences
All objects in the world known up front
One-shot planning

Allows planning to be a pure inference problem

 But humans in the loop can ruin a really a perfect day 



Human-in-the-Loop 
Planning
• In many scenarios, humans are part of the 

planning loop, because the planner:

• Needs to plan to avoid them

• Human-Aware Planning

• Needs to provide decision support to 
humans

• Because “planning” in some 
scenarios is too important to 
be left to automated planners

• “Mixed-initiative Planning”; 
“Human-Centered Planning”; 
“Crowd-Sourced Planning”

• (May need)  help from humans

• Mixed-initiative planning; 
“Symbiotic autonomy”

• Needs to team with them

• Human-robot teaming; 
Collaborative planning
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Planning: The Canonical View
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Plan (Handed off 

for Execution)

Full

Problem

Specification

PLANNER

Fully Specified 

Action Model

Fully Specified 

Goals

Completely Known 

(Initial) World StateAssumption: 
Complete Action Descriptions
Fully Specified Preferences
All objects in the world known up front
One-shot planning

Allows planning to be a pure inference problem

 But humans in the loop can ruin a really a perfect day 

Violated Assumptions:
Complete Action Descriptions (Split knowledge)
Fully Specified Preferences    (uncertain users)
Packaged planning problem (Plan Recognition)
One-shot planning (continual revision)

Planning is no longer a pure inference problem 



rakaposhi.eas.asu.edu/hilp-tutorial



rakaposhi.eas.asu.edu/hilp-tutorial



Dimensions of Variation in 
Human in the Loop Planning

• Cooperation Modality
• Awareness, Interaction, Teaming

• Communication Modality
• Stigmergic, Custom Interfaces, Speech/NLP

• What is Communicated
• Goals, preferences, plan constraints, new goals

• Knowledge Level (Who knows what)
• Incomplete knowledge about human’s goals as well 

as capabilities
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Challenges in Human-in-the-loop 
Planning

• Interpret what humans are doing based on incomplete 
human and domain models (Modeling)

– Plan/goal/intent recognition

• Plan with incomplete domain models (Decision Making)

– Robust planning/execution support with “lite” models

– Proactive teaming support

• Explanations/Excuses  (Interaction/Communication)

– How should the human and robot coordinate

• Understand effective interactions between humans and 
machines (Evaluation)

– Human factor study



Human-in-the-Loop 
Planning
• In many scenarios, humans are part of the 

planning loop, because the planner:

• Needs to plan to avoid them

• Human-Aware Planning

• Needs to provide decision support to 
humans

• Because “planning” in some 
scenarios is too important to 
be left to automated planners

• “Mixed-initiative Planning”; 
“Human-Centered Planning”; 
“Crowd-Sourced Planning”

• (May need)  help from humans

• Mixed-initiative planning; 
“Symbiotic autonomy”

• Needs to team with them

• Human-robot teaming; 
Collaborative planning
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Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like”  27



Manipulative (proximal) vs. 
Cognitive (remote) Teaming
• Much of the work in human-robot 

teaming has been focused on 
manipulation tasks where the human 
and the robot are in close proximity 

• Here the plans are mostly path 
planning/manipulator planning. 

• Our focus has been on tasks that 
require cognitive (in addition to 
manipulative) decisions—as is 
typically the case with remote human-
robot collaboration in urban search 
and rescue scenarios. 
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• Typically multi-agent planning methods assume 
all agents use similar models

– E.g. All agents with STRIPS action models

• Unreasonable to expect similar sorts of action 
models for the robot and the human..

– Human models (from the Robot’s point of view) are 
likely to be highly incomplete (as, of course, Robot’s 
model from the human point of view)

• So how do we represent (and handle) incomplete 
models of human capabilities? 
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How do we get the Planning Models? 
(e.g. of the human in the loop) 



• The temptation is to go with existing action 
models & introduce incompleteness 
– Atomic: MDP/POMDP
– Factored: STRIPS, RDDL, HTN etc

• Example work by Garland&Lesh(2002)

• While they are fine if someone hand-specifies 
them, they are much harder to learn, given 
the kinds of information that is likely to be 
available. 
– Significant incompleteness in observations

• Sensor occlusion, noisy observations, 
– [Zhuo & Kambhampati, IJCAI 2013]

– There may be significant gaps between 
observations

32

Challenges in acquiring Human Models



Spectrum of Domain Models

Ease of learning/acquiring the models 



Partial PDDL Domain Models

Each action a is associated with possible precond and 
effects (in addition to the normal precond/eff):

• PreP(a) [p]: set of propositions that a might depend on 
during execution

• AddP(a) [p]: : set of propositions that a might add after 
execution

• DelP(a) [p]: : set of propositions that a might delete after 
execution

a

p1

p3

p1

p3

–

p4

p2

–

Example: An action a that is 
known to depend on p1, add p4 
and delete p3. In addition, it might 
have p3 as its precondition, might 
add p2 and might delete p1 after 
execution.



There are known knowns; 
there are things we know 
that we know. There are 
known unknowns; that is 
to say, there are things 
that we now know we 
don’t know. But there are 
also unknown unknowns; 
there are things we do not 
know we don’t know.



Solution Concept: Robust Plans
• Solution concept:

• Robust plan

• Plan is highly robust if executable in 
large number of most-likely 
candidate models

• Robustness measure

• Set of candidate domain models S
(consistent with the given 
deterministic partial domain model 
D)

• A complete but unknown domain 
model D*

• Can be any model in S

 
a

aaaK )(DelP)(AddP)(PreP

|P| Number of candidate models with 
which the plan succeeds

Robustness value: 3/8

Easily generalized to consider model likelihood



Generating Robust Plans

• Compilation approach: Compile into a 
(Probabilistic) Conformant Planning
problem

• One “unobservable” variable per 
each possible effect/precondition

• Significant initial state 
uncertainty

• Can adapt a probabilistic conformant 
planner such as  POND [JAIR, 2006; 
AIJ 2008]

• Direct approach: Bias a planner’s 
search towards more robust plans

• Heuristically assess the robustness 
of partial plans

• Need to use the (approximate) 
robustness assessment 
procedures

• A novel extension to relaxed 
planning heuristics to take 
robustness into account

[Nguyen et al; NIPS 2013; Nguyen & Kambhampati, ICAPS 2014]



[NIPS 2013]



[ICAPS 2014]





Capability Model

41

T-gap capability model

Synchronic 
links

Diachronic 
links

(Generalization of 2-TBN model used in RDDL)
(Imperfect analogy to) HTN Models. A capability can be thought of as an abstract task

[AAMAS 2015]



Capability Models

42

->: denote an atomic state change

{has_water(AG), has_coffee_beans(AG)} 

-> {has_boilling_water(AG),  has_coffee_beans(AG)}

-> {has_boilling_water(AG),  has_ground_coffee_beans(AG)}

-> {has_coffee(AG)}                 

We start with the “default assumption” that domain models are 

incomplete

 DEFINITION (CAPABILITY) – Given an agent,  a 

capability is a mapping , which is an 

assertion about the probability of the existence of a 

plan in fewer than or equal to T atomic state 

changes that can connect the two partial states.

Partial states

has_water(AG) => has_ground_coffee_beans(AG)

has_boiling_water(AG) => has_coffee(AG)… 
When T = 2

When T = 3
… (including all capabilities when T = 2)

has_water(AG) => has_coffee(AG)

Bound on the 

gaps between 

observations
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Parameter Learning

Learning samples

Apply Bayesian learning (assuming beta distributions): 

We assume that the maximum number of missing state 
observations between any two observations in the partial 
plan trace is upper bounded by T

DEFINITION (T-GAP PARTIAL PLAN TRACE). A T-gap 
partial plan trace is a partial plan trace in which all 
k[1, 2…] <= T



 Applicable: 
Success: compute a set of resulting states s,

Failure: no change
 Inapplicable – no change to s* 44

Planning with Capability Models 

 Any planning state is a set of complete states: a belief state 

 Select a capability to apply:
{(complete state 1), (complete state 2)…}                

sI => sE =                

 For each s* in the belief state, 

T-gap capability model



Action Vector Models

• View observed action sequences as “sentences” in a 
language whose “words” are the actions

• Apply skip-gram models to these sequences and 
embed the action “words” in a higher dimensional 
space
– The proximity of the action words in that space is seen as 

their “affinity”

• Use the action affinities as a way to drive planning 
and plan recognition 

1/27/2016 UNCLASSIFIED 45



Problem Formulation

• The recognition problem defined by: 
(L, O, A)
– L: a plan library, e.g.,

– O: a sequence of observations, e.g.,

– A: A set of actions

• Task: find a plan to best explain O:

plan 1: pick-up-B stack-B-A pick-up-D stack-D-C
plan 2: unstack-B-A put-down-B unstack-D-C put-down-D 
plan 3: pick-up-B stack-B-A pick-up-C stack-C-B pick-up-D 
stack-D-C

pick-up-B NULL unstack-D-C put-down-D NULL
stack-C-B NULL NULL

pick-up-B stack-B-A unstack-D-C put-down-D 
pick-up-C stack- C-B pick-up-D stack-D-C

Note that:
• without initial 

states/goals/intermedia
te states in L

• |p| = |O|
• p is not necessarily in L



Learn vectors of actions

Learn vectors wi for ai in A by optimizing 

a11 a12 … a1n a21 a22 … a2n ...      aT1 aT2 ... aTn

Plan 1 Plan 2 Plan T

• T =|L| 
• c is the window size 

of action context

The basic probability 
defined by hierarchical 
softmax, [cf. Mikolov et 
al. NIPS-13]



Action Vector Models can be used to 
Recognize Plans

With the learnt vectors wi, we can predict the target 
plan (as the most consistent with the affinities). We 
use an EM procedure to speedup the prediction. 

The target plan 
to be recognized

• M = |the target plan|
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Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like”  49



How to plan to be useful?

• Depends on the modality of interaction 
between the humans and the robot

• Are they in an explicit team vs. cohabiting the 
same environment?

• Are they communicating or is it stigmergic
collaboration? 

• Our early work focused on issues in 
explicit teaming and full communication

50
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Planning for Human-Robot Teaming

51Coordinate with Humans
[IROS14]

Replan for the Robot

[AAAI10, DMAP13]

Communicate with 

Human(s) in the Loop

Open World Goals

[IROS09, AAAI10, TIST10]

Action Model Information

[HRI12]

Handle Human Instructions

[ACS13, IROS14]
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Human-Robot Cohabitation

• Humans and robots 
sharing workspace (not 
necessarily as a team).

• Need for human-aware 
planning for modeling a 
robot’s interactions with 
its human colleagues. 

• Such interactions are 
often inherently different 
from traditional human-
robot teaming scenarios.

Behavior Modeling – Human Aware Planning



Stigmergic Collaboration

• The robot directly interacts with the human’s plans to 
assist/coordinate by making positive interventions

• e.g. planning for serendipity

• The robot coordinates it’s own behavior to suit the 
human’s predicted plans to minimize conflicts

• e.g. planning with conflicts on shared resources 

53

in human robot cohabitation

Much of the planning challenge is about 
defining the interaction constraints that 
affect the robot’s planning process.



Current Use Case

• Commander can perform triage (needs to get a medkit to do so) 

• The Robot can also conduct triage or deliver medkits if requested
• The medkits are the shared resources here – the robot must de-conflict its 

plans to use the medkit with that of the human’s.

54

Urban Search and Rescue (USAR) scenario



Planning for Serendipity

55

A running example

CommX has to conduct triage in room1.

Optimal plan for CommX involves picking up medkit1 in room2.

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Planning for Serendipity

56

A running example

CommX has to conduct triage in room1.

The robot fetches medkit2 from room3 and drops it off in hall3 before
CommX passes by, thus saving him the effort to get a medkit himself.

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Planning for Serendipity

57

A running example

CommX has to conduct triage in room1.

For the current configuration, the optimal plan for CommX involves picking
up medkit1 in room7.

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Planning for Serendipity
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A running example

CommX has to conduct triage in room1.

The previous serendipitous intervention becomes redundant here because
CommX has already acquired a medkit by the time the robot can intervene.

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Planning for Serendipity
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A running example

CommX has to conduct triage in room1.

However, if the robot were able to communicate it’s intention to intervene,
the previous plan for a serendipitous interception still holds.

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Plan Interruptibility

60

Positively removable subplan

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Plan Preservation

• Don’t disturb the plan prefix before the serendipitous intervention 

• not  necessary if the robot is able to communicate intentions

• The resulting world state after the serendipitous intervention models the 
original intended state of the human at that point 

• doesn’t plan for further assistance

61

Removable subplans ≠ Serendipitous exceptions

Planning for Serendipity. Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula, Yu Zhang, Matthias Scheutz, 
David Smith, Subbarao Kambhampati. IROS 2015, Hamburg.



Planning with Resource Conflicts

62

Overview & System Components

• Information from the predicted plans concisely represented as 
resource profiles and fed to the planning stage.

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang, 
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem. 

[AAMAS16]



Resource Profiles

• We can have profiles at different levels of abstraction to reason about 
different aspects of the plan

• Yes/no of resource usage

• Profiles over actual groundings 
of the resource variables

63

different levels of abstraction

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang, 
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem. 



Modeling Behavior – Compromise

64

Robot settles for a suboptimal plan

CommX has to do triage in room1, Robot is tasked to conduct triage in hall3 –

optimal plans require medkit1 from room2 for both agents.

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang, 
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem. 



Modeling Behavior – Opportunism

65

Robot senses favourable turn of events

When planning horizon 
is increased…

CommX has to do triage in room1, Robot is tasked to conduct triage in hall3 –

optimal plans require medkit1 from room2 for both agents.

Planning with Stochastic Resource Profiles: An Application to Human-Robot Co-habitation. Tathagata Chakraborti, Yu Zhang, 
David Smith, Subbarao Kambhampati. ICAPS PlanRob 2015, Jerusalem. 



Plan Generation

• We use IP-based planners to model the interaction constraints discussed so far

Integer Programs to model interaction constraints

• Planning with Resource Conflicts • Planning for Serendipity

Minimize overlap between profiles 
produced by the robot’s plans with 
those predicted from the human’s

Compute positively removable 
sub-plans that uphold the two 
preservation constraints



Evaluations – Planning for Serendipity

• We compare the reduction in cost of (overall) team plans from individual optimal plans to 
planning for serendipity, with and without communication.

• The robot’s actions costs are discounted with respect to those of the human’s to 
demonstrate how more and more situations become conducive to serendipitous 
interventions as the robot’s actions become relatively cheaper.

• Number of serendipitous plans indicate that there are plenty of opportunities 
for such serendipitous interventions.

Average individual plan cost = 9.825 



Evaluations – Planning with Resource Conflicts

• We contrast the effect of the parameters of the IP-formulation on the plans produced.
• Increasing the planning horizon makes the robot more opportunistic 

• Increasing the relative penalty for overlaps in profiles makes the robot more conservative and lowers utility

• Algorithm is robust to number of observations, but larger hypothesis sets effect the planner negatively as expected

• Complexity of the planner stage only is independent of the number of agents, and size of the 
hypothesis set – advantage of the modular approach and profile representation of plans.



Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like”  69
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When is a plan “Explainable” to the human in the 

loop?

But, alas, M*
R is not known! 
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Explainability Labeling

93 

Analogy: Think of learning how to write address
labels so the postal carrier can understand..

Problem: M*
R is not known

Solution: Learn it, but indirectly
as a labeling scheme.. 
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Learning the Labeling Scheme using CRF



 Robot can generate a set of 

plans and select the most

explainable/predictable plan

Plan selection

Plan heuristic

 Robots can use it to directly

synthesize more

explainable/predictable plans

Using Explainability Model

Preliminary results indicate that such 
a scheme is reasonably effective in
picking explainable plans..



Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like”  74



Proactive Help Can 

be Disconcerting!

75

The Sentence Finisher

We dance round in a ring and suppose,

But the Secret sits in the middle and knows. 

Do we really know what 

(sort of assistance) 

humans want?



Human Factor Studies

• To understand whether human-robot teams perform 
better with more intelligent/proactive robot 
teammates or not

• Two studies

– Wizard-of-Oz  Human-Human studies
• With Cade Bartlett and Nancy Cooke 

– Cade Bartlett’s M.S. thesis (in preparation for Journal submission)

– Human-Planner studies
• To see if proactive robots that use plan recognition to anticipate 

human actions help or hinder team performance

– [IROS 2015][HRI2015]

1/27/2016 UNCLASSIFIED 76



Human-human Teaming Analysis in 
Urban Search and Rescue

Simulated search task (Minecraft) with human playing 
role of USAR robot

• 20 internal/external dyads tested

• Conditions of autonomous/intelligent or remotely controlled 
robot

• Differences in SA, performance, and communications



Measures

• Performance:
• ( 𝑅𝑜𝑜𝑚𝑠 𝑀𝑎𝑟𝑘𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑠𝑠𝑒𝑠 −
(𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑝𝑟𝑒𝑠𝑠𝑒𝑠 + 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑠𝑠𝑒𝑠)). 

• SA
• External – Rooms marked correctly
• Internal – Repeated presses

• Covariates
• Spatial ability task
• Demographics
• Experience

• Robotics

• Minecraft

• Gaming



Procedure

1. Random role assignment

2. Consent

3. Spatial ability test

4. Seated with divider between

5. Instructions (according to condition)

6. Search plan

7. Internal training

8. USAR task (15 minutes)

9. Notified of end of time targets (8 minutes in)

10. Demographics/experience/TLX

11. Debrief

12. Compensation



Summary of Key Findings

• Intelligent condition (vs. Remote):
• Higher dyad performance

• Lower external workload

• Less communications (especially from external)

• Tendency for Higher External SA (non-significant)
Higher Levels of External SA driven by

• Greater percent excuses

• Lower difference in spatial ability between internal and 
external

• Higher internal SA (low repeat button presses)

• Communications associated with most 
effective dyad performance

• Higher percent excuses (A flag for whether the 
communication was related to one of the environment’s 
inconsistencies with the provided map)



Human Factor Studies

• To understand whether human-robot teams 
perform better with more intelligent/proactive 
robot teammates or not

• Two studies
• Wizard-of-Oz  Human-Human studies

• With Cade Bartlett and Nancy Cooke 
• Cade Bartlett’s M.S. thesis (in preparation for Journal submission)

• Human-Planner studies
• To see if proactive robots that use plan recognition to 

anticipate human actions help or hinder team performance
• [IROS 2015][HRI 2015]
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Analysis of Proactive Support in 
Human-robot teaming

Simulated search task (Webots) with human remotely 
controlling a robot while collaborating with an intelligent 
robot ‘Mary’:



Measures

Performance:
• Time taken to treat the critically injured 

casualty; time taken to treat both

Task settings:

• Monitoring cameras that 
can provide observations

• Casualties to be treated 
using medical kits in 
medical rooms

• Environment segmented 
by doors



Summary of Key Findings

• Mary with a proactive support capability (vs. 
without):

• Higher dyad performance

• Lower communication

• Slightly (non-significant) increased mental workload

• Mary with a proactive support capability in our 
USAR task scenario is generally preferred

[IROS 2015; HRI 2015] 



Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
not great at guessing what humans “like”  85

Summary for Today



Agenda for Today

• How to learn and plan with incomplete domain 
models

• Complete--Approximate--Shallow

• How to plan to be useful to the human
• Avoiding conflicts and offering serendipitous help

• How to make planned behavior explainable to 
the human in the loop

• Humans will parse the behavior in terms of their 
understanding of the Robot’s model

• How to recognize and evaluate what are the 
desiderata for fluent teaming with humans

• As the “paper clip” assistant shows, we AI’ers are 
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